

SUBMITTAL PACKAGE

Serving Cummins Customers

Cummins power solutions are supported by the largest and best-trained worldwidecertified sales/distributor network in the industry. This network will help you select and install the critical power solution to meet the requirements of your specific application. This same network provides experts with advanced technology to make your life easier while providing a seamless support experience.

IMPORTANT: The critical power solution information and specifications included in this pdf can be used by the site contractor(s) and/or engineer(s) to assist with planning for and accomplishing the overall power solution installation. Please forward this document to the appropriate personnel, as necessary.

It is the obligation of the electrical contractor and reviewing engineer to determine that the item quantities and accuracy of this submittal is correct as required for the job. Any inaccuracies or deviations must be addressed with Cummins Inc. before release to manufacturing. Any releases of material to manufacturing by the above parties constitute an acceptance of the accuracy of the submittal. Any changes after release will be viewed as a change order, subject to pricing changes. Please take the time to review this package for accuracy to prevent any after-shipment problems that could cause delay in energization.

Cummins certifies that these drawings, material lists, specification and datasheets have been checked prior to submittal and they:

- accurately depict the proposed equipment
- provide current information to the date of the submittal and
- present true and accurate equipment information.

This Approval Drawing Package is submitted as our interpretation of the project requirements and/or the specifications for this job. Please note that issuance of these submittals shall not be deemed or interpreted as performance nor acceptance of your purchase order terms and conditions.

For questions or comments regarding this submittal, please contact the Cummins Project Manager listed on the title page.

TABLE OF CONTENTS

Section 1 - PROJECT INFORMATION Project Bill of Material

Section 2 - GENERATOR SPEC SHEETS Generator Specification Sheet Generator Data Sheet PowerCommand Control (PCC) Specification Sheet Exhaust Emission Compliance Statement Cooling System Data Sheet Sound Data Alternator Data Sheet

Section 3 - GENERATOR DRAWINGS

Generator Outline Drawing

Enclosure

Fuel Tank Foundation

Section 4 - GENERATOR ACCESSORIES

Battery Charger Specification Sheet Circuit Breaker Installation Drawing Circuit Breaker L Frame Circuit Breaker Specification Sheets DC Interconnect AC Interconnect

Section 5 - STARTUP & WARRANTY

Pre-Startup Checklist Generator Warranty Statement

Section 1 – Project Information

October 5, 2024

Bill of Material

Description	Qty
DQDAC, Genset, Configurable Diesel	1
U.S. EPA, Stationary Emergency Application	
300DQDAC, Diesel Genset, 60Hz, 300kW	
Duty Rating - Standby Power (ESP)	
-	
•	
-	
-	
DQDAC, Genset, Configurable Diesel	1
• • • •	
300DQDAC, Diesel Genset, 60Hz, 300kW	
Duty Pating Standby Power (ESP)	
-	
	U.S. EPA, Stationary Emergency Application 300DQDAC, Diesel Genset, 60Hz, 300kW Duty Rating - Standby Power (ESP) Emission Certification, EPA, Tier 3, NSPS CI Stationary Emergency Voltage - 277/480, 3 Phase, Wye, 4 Wire Alternator - 60Hz, 12 Lead, Limited Range, 125/105C Exciter/Regulator - Permanent Magnet Generator, 3 Phase Sensor Steel Weather Protective Enclosure, with Exhaust System, Residential Muffler Enclosure Color - Green, Steel Fuel Tank - None Fuel Water Separator Control Mounting - Front Facing PowerCommand 2.3 Controller Stop Switch - Emergency Control Display Language - English Circuit Breaker or Entrance Box or Terminal Box - Left Only Circuit Breaker or Entrance Box or Terminal Box - Left Only Circuit Breaker or Entrance Box or Terminal Box, Top Entry, Right - None Bottom Entry, Left Circuit Breaker or Entrance Box or Terminal Box, Top Entry, Right - None Engine Governor - Electronic, Isochronous Engine Air Cleaner - Normal Duty Battery Charging Alternator Engine Cooling - Radiator, High Ambient Air Temperature, Ship Fitted Shutdown - Low Coolant Level Engine Coolant - 50% Antifreeze, 50% Water Mixture Engine Oil Genset Warranty - 2 Years Base Literature - English Packing - Skid, Poly Bag

A048G602	Battery Charger-10Amp, 120/208/240VAC, 12/24V, 50/60Hz	2
0179-4621-04	Fuel Tank Kit-550 Gallon	2
DQDAC_A322-2	Packing - Skid, Poly Bag	
DQDAC_L050-2	Literature - English	
DQDAC_L028-2	Genset Warranty - 2 Years Base	
DQDAC_H706-2	Engine Oil	
DQDAC_H669-2	Engine Coolant - 50% Antifreeze, 50% Water Mixture	
DQDAC_H389-2	Shutdown - Low Coolant Level	
DQDAC_E125-2	Engine Cooling - Radiator, High Ambient Air Temperature, Ship Fitted	
DQDAC_A333-2	Battery Charging Alternator	
DQDAC_D041-2	Engine Air Cleaner - Normal Duty	
DQDAC_A334-2	Engine Starter - 24 Volt DC Motor	
DQDAC_A366-2	Engine Governor - Electronic, Isochronous	
DQDAC_5110	Circuit Breaker or Entrance Box or Terminal Box, Top Entry, Right - None	
DQDAC_KB73-2	Bottom Entry, Left	
DQDAC_4790	Terminal Box - Low Voltage, Right - None	
DQDAC KU09-2	Circuit Breaker - 450A, Left, 3P, 600/690V, SS RMS, 80%, UL/IEC	
DQDAC_KU93-2	Circuit Breaker or Entrance Box or Terminal Box - Left Only	
DQDAC_H536-2	Control Display Language - English	
DQDAC K796-2	Stop Switch - Emergency	
DQDAC H703-2	PowerCommand 2.3 Controller	
DQDAC H679-2	Control Mounting - Front Facing	
DQDAC_2280 DQDAC_C127-2	Fuel Tank - None Fuel Water Separator	

NOTES:

Proposal is for equipment only, offloading, rigging, and installation by others.

Fuel and permits, unless listed above, is not included.

Cummins Standard Start-up and testing is included. Additional tests, such as NETA testing, if required, is by others Coordination Study not provided.

Section 2 – Generator Spec Sheets

Diesel Generator Set QSL9-G7 Series Engine

250 kW - 300 kW Standby

Description

Cummins[®] commercial generator sets are fully integrated power generation systems providing optimum performance, reliability and versatility for stationary Standby and Prime Power applications.

Features

Cummins heavy-duty engine - Rugged 4cycle, industrial diesel delivers reliable power, low emissions and fast response to load changes.

Alternator - Several alternator sizes offer selectable motor starting capability with low reactance 2/3 pitch windings, low waveform distortion with non-linear loads and fault clearing short-circuit capability. **Control system** - The PowerCommand[®] 2.3 electronic control is standard equipment and provides total generator set system integration including automatic remote starting/stopping, precise frequency and voltage regulation, alarm and status message display, output metering, auto-shutdown at fault detection and NFPA 110 Level 1 compliance. The PowerCommand[®] 3.3 control is also available as an option.

Cooling system - Standard cooling package provides reliable running at the rated power level.

Enclosures - Optional weather protective and sound attenuated enclosures are available.

Fuel tanks - Dual wall sub-base fuel tanks are also available.

NFPA - The genset accepts full rated load in a single step in accordance with NFPA 110 for Level 1 systems.

Warranty and service - Backed by a comprehensive warranty and worldwide distributor network.

	Standby ra	ting	Prime rating	9	Continuou	s rating	Data sheets	
Model	60 Hz kW (kVA)	50 Hz kW (kVA)	60 Hz kW (kVA)	50 Hz kW (kVA)	60 Hz kW (kVA)	50 Hz kW (kVA)	60 Hz	50 Hz
DQDAA	250 (313)		225 (281)				D-3442	
DQDAB	275 (344)		250 (313)				D-3443	
DQDAC	300 (375)		270 (338)				D-3444	

Our energy working for you.™

©2022 Cummins Inc. | S-1585.DOCX (02/22)

Generator Set Specifications

Governor regulation class	ISO 8528 Part 1 Class G3
Voltage regulation, no load to full load	± 0.5%
Random voltage variation	± 0.5%
Frequency regulation	Isochronous
Random frequency variation	± 0.5%
Radio frequency emissions compliance	IEC 801.2 through IEC 801.5; MIL-STD-461C, Part 9

Engine Specifications

Bore	114.0 mm (4.49 in)
Stroke	145 mm (5.69 in)
Displacement	8.9 L (543 in ³)
Configuration	Cast iron, in-line 6 cylinder
Battery capacity	750 amps minimum at ambient temperature of -18 $^{\circ}\!C$ (-0.4 $^{\circ}\!F$) and above
Battery charging alternator	70 amps
Starting voltage	24 volt, negative ground
Fuel system	Direct injection: number 2 diesel fuel, fuel filter, automatic electric fuel shutoff
Fuel filter	Dual element with water separator
Air cleaner type	Normal duty
Lube oil filter type(s)	Single spin-on, combination full flow and bypass filters
Standard cooling system	High ambient radiator

Alternator Specifications

Design	Brushless, 4 pole, drip proof revolving field
Stator	2/3 pitch
Rotor	Single bearing, flexible discs
Insulation system	Class H
Standard temperature rise	125 ℃ Standby, 105 ℃ Prime
Exciter type	Permanent Magnet Generator (PMG)
Phase rotation	A (U), B (V), C (W)
Alternator cooling	Direct drive centrifugal blower
AC waveform Total Harmonic Distortion (THDV)	< 5% no load to full linear load, < 3% for any single harmonic
Telephone Influence Factor (TIF)	< 50 per NEMA MG1-22.43
Telephone Harmonic Factor (THF)	< 3

Available Voltages

60 Hz 3-phase			50 Hz 3-phase		
Reconnectable		Non-Reconnectable	Reconnectable	Non-Reconnectable	
110/90139/240240/416	 120/208 120/240 254/440 	• 277/480 • 347/600			

Note: Consult factory for other voltages.

Generator Set Options and Accessories

Engine

- 120/240 V 1500 W coolant heater
- 120/240 V 150 W lube oil heater
- Heavy duty air cleaner
- Engine oil temperature
- **Control panel**
- 120/240 V 100 W control anticondensation heater
- Exhaust pyrometer
- Ground fault indication
- Remote fault signal package
- Run relay package
- Paralleling configuration

Alternator

- 105 °C rise
- 125 °C rise
- 120/240 V 100 W anticondensation heater
- PMG excitation
- Single phase

Exhaust system

- Genset mounted muffler
- Heavy duty exhaust elbow
- Slip on exhaust connection
- NPT exhaust connection

Fuel system

- 1022 L (270 gal) sub-base tank
- 1136 L (300 gal) sub-base tank
- 1514 L (400 gal) sub-base tank
- 1893 L (500 gal) sub-base tank
- 2271 L (600 gal) sub-base tank
- 2498 L (660 gal) sub-base tank
- 2725 L (720 gal) sub-base tank
- 5565 L (1470 gal) sub-base tank Generator set
- AC entrance box
- Battery
- Battery charger
- Export box packaging
- UL 2200 Listed
- Main line circuit breaker
- Nain line circuit breaker
 PowerCommand network
- PowerCommand network
- Communications Module (NCM)
- Remote annunciator panel
- Spring isolators
- Enclosure: aluminum, steel, weather protective or sound attenuated
- 2 year Standby power warranty
- 2 year Prime power warranty
- 5 year Basic power warranty
- 10 year major components warranty

Note: Some options may not be available on all models - consult factory for availability.

Control system 2.3

The PowerCommand 2.3 control system - An integrated generator set control system providing voltage regulation, engine protection, generator protection, operator interface and isochronous governing (optional).

Control – Provides battery monitoring and testing features and smart-starting control system.

InPower™ – PC-based service tool available for detailed diagnostics.

PCCNet RS485 – Network interface (standard) to devices such as remote annunciator for NFPA 110 applications.

Control boards - Potted for environmental protection.

Ambient operation – Suitable for operation in ambient temperatures from -40 $^\circ$ C to +70 $^\circ$ C and altitudes to 13,000 feet (5000 meters). Prototype tested - UL, CSA and CE compliant.

AC protection

- · AmpSentry protective relay
- Over current warning and shutdown
- Over and under voltage shutdown
- Over and under frequency shutdown
- · Over excitation (loss of sensing) fault
- Field overload
- Overload warning
- Reverse kW shutdown
- Reverse Var shutdown
- Short circuit protection

Engine protection

- Overspeed shutdown
- · Low oil pressure warning and shutdown
- · High coolant temperature warning and shutdown
- Low coolant level warning or shutdown
- · Low coolant temperature warning
- · High, low and weak battery voltage warning
- Fail to start (overcrank) shutdown
- Fail to crank shutdown
- · Redundant start disconnect
- · Cranking lockout
- Sensor failure indication
- · Low fuel level warning or shutdown
- · Fuel-in-rupture-basin warning or shutdown
- Operator/display panel
- · Manual off switch
- 128 x 128 Alpha-numeric display with push button access for viewing engine and alternator data and providing setup, controls and adjustments (English or international symbols)
- LED lamps indicating genset running, not in auto, common warning, common shutdown, manual run mode and remote start
- Suitable for operation in ambient temperatures from -20 $^{\rm e}{\rm C}$ to +70 $^{\rm e}{\rm C}$

Alternator data

- Line-to-Neutral AC volts
- Line-to-Line AC volts
- 3-phase AC current
- Frequency
- kVA, kW, power factor

Engine data

- DC voltage
- Lube oil pressure
- Coolant temperature

Control functions

- · Time delay start and cool down
- Glow plug control (some models)
- Cycle cranking
- PCCNet interface
- (4) Configurable inputs
- (4) Configurable outputs
- Remote emergency stop
- · Battle short mode
- Load shed
- · Real time clock with exerciser
- Derate

Digital governing (optional)

- Integrated digital electronic isochronous governor
- Temperature dynamic governing

Digital voltage regulation

- Integrated digital electronic voltage regulator
- 3-phase Line-to-Line sensing
- Configurable torque matching
- Fault current regulation under single or three phase fault conditions

Other data

- Genset model data
- · Start attempts, starts, running hours
- · Fault history
- RS485 Modbus[®] interface
- Data logging and fault simulation (requires InPower service tool)
- Total kilowatt hours
- Load profile

Options

- Auxiliary output relays (2)
- 120/240 V, 100 W anti-condensation heater
- Remote annunciator with (3) configurable inputs and (4) configurable outputs
- PMG alternator excitation
- PowerCommand for Windows[®] remote monitoring software (direct connect)
- · AC output analogue meters
- PowerCommand 2.3 and 3.3 control with AmpSentry protection
- For further detail on PC 2.3 see document S-1569. For further detail on PC 3.3 see document S-1570.

PowerCommand 3.3 Control System

and the second s		O Conset Running O Conset Running O Conset Running
Promite on a Propine Data Afternator Data History-About Adjust	e (L/D Senic Selap Paralluling Save-Restore	G Statis Auto S Statisen O S Statisen O S Waning

An integrated microprocessor based generator set control system providing voltage regulation, engine protection, alternator protection, operator interface and isochronous governing. Refer to document S-1570 for more detailed information on the control.

AmpSentry – Includes integral AmpSentry protection, which provides a full range of alternator protection functions that are matched to the alternator provided.

Power management – Control function provides battery monitoring and testing features and smart starting control system.

Advanced control methodology – Three phase sensing, full wave rectified voltage regulation, with a PWM output for stable operation with all load types.

Communications interface – Control comes standard with PCCNet and Modbus[®] interface.

Regulation compliant – Prototype tested: UL, CSA and CE compliant.

Service - InPower™ PC-based service tool available for detailed diagnostics, setup, data logging and fault simulation.

Easily upgradeable – PowerCommand controls are designed with common control interfaces.

Reliable design – The control system is designed for reliable operation in harsh environment.

Multi-language support

Operator panel features

Operator/display functions

- Displays paralleling breaker status
- Provides direct control of the paralleling breaker
- 320 x 240 pixels graphic LED backlight LCD
- Auto, manual, start, stop, fault reset and lamp test/panel lamp switches
- Alpha-numeric display with pushbuttons
- LED lamps indicating generator set running, remote start, not in auto, common shutdown, common warning, manual run mode, auto mode and stop

Paralleling control functions

- First Start Sensor System selects first generator set to close to bus
- Phase Lock Loop Synchronizer with voltage matching
- Sync check relay
- · Isochronous kW and kVar load sharing
- Load govern control for utility paralleling
- Extended Paralleling (Base Load/Peak Shave) Mode
- Digital power transfer control, for use with a breaker pair to provide open transition, closed transition, ramping closed transition, peaking and base load functions,
- Alternator data
- · Line-to-Neutral and Line-to-Line AC volts
- 3-phase AC current
- Frequency

kW, kVar, power factor kVA (three phase and total)

- Engine data
- DC voltage
- Engine speed
- Lube oil pressure and temperature
- · Coolant temperature
- Comprehensive FAE data (where applicable)
- Other data
- Genset model data
- Start attempts, starts, running hours, kW hours
- · Load profile (operating hours at % load in 5% increments)
- Fault history
- Data logging and fault simulation (requires InPower)

Standard control functions

Digital governing

- Integrated digital electronic isochronous governor
- Temperature dynamic governing

Digital voltage regulation

- · Integrated digital electronic voltage regulator
- 3-phase, 4-wire Line-to-Line sensing
- Configurable torque matching

AmpSentry AC protection

- AmpSentry protective relay
- Over current and short circuit shutdown
- Over current warning
- Single and three phase fault regulation
- Over and under voltage shutdown
- Over and under frequency shutdown
- · Overload warning with alarm contact
- Reverse power and reverse Var shutdown
- Field overload shutdown

Engine protection

- · Battery voltage monitoring, protection and testing
- Overspeed shutdown
- · Low oil pressure warning and shutdown
- High coolant temperature warning and shutdown
- Low coolant level warning or shutdown
- Low coolant temperature warning
- · Fail to start (overcrank) shutdown
- Fail to crank shutdown
- Cranking lockout
- Sensor failure indication
- Low fuel level warning or shutdown
- · Fuel-in-rupture-basin warning or shutdown
- Full authority electronic engine protection

Control functions

- Time delay start and cool down
- · Real time clock for fault and event time stamping
- · Exerciser clock and time of day start/stop
- Data logging
- Cycle cranking
- Load shed
- Configurable inputs and outputs (4)
- Remote emergency stop

Options

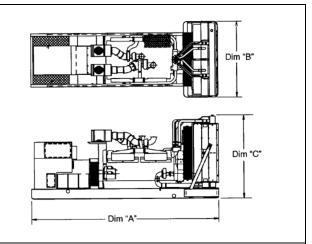
• Auxiliary output relays (2)

Ratings Definitions

Emergency Standby Power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-Time Running Power (LTP):


Applicable for supplying power to a constant electrical load for limited hours. Limited Time Running Power (LTP) is in accordance with ISO 8528.

Prime Power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base Load (Continuous) Power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271 and BS 5514.

This outline drawing is for reference only. See respective model data sheet for specific model outline drawing number.

Do not use for installation design

Dimensions and weights with standard cooling system

Model	Dim "A" mm (in.)	Dim "B" mm (in.)	Dim "C" mm (in.)	Estimated set weight* dry kg (lbs)	Estimated set weight* wet kg (lbs)
DQDAA	3023 (119.0)	1270 (50.0)	1617 (64.0)	2184 (4814)	2234 (4926)
DQDAB	3023 (119.0)	1270 (50.0)	1617 (64.0)	2184 (4814)	2234 (4926)
DQDAC	3023 (119.0)	1270 (50.0)	1617 (64.0)	2319 (5113)	2370 (5225)

Dimensions and weights with optional cooling system with seismic feature codes L228-2 and/or L225-2

Model	Dim "A" mm (in.)	Dim "B" mm (in.)	Dim "C" mm (in.)	Estimated set weight* dry kg (lbs)	Estimated set weight* wet kg (lbs)
DQDAA	3023 (119.0)	1270 (50.0)	1676 (66.0)	2184 (4814)	2234 (4926)
DQDAB	3023 (119.0)	1270 (50.0)	1676 (66.0)	2184 (4814)	2234 (4926)
DQDAC	3023 (119.0)	1270 (50.0)	1676 (66.0)	2319 (5113)	2370 (5225)

*Note: Weights represent a set with standard features. See outline drawings for weights of other configurations

Codes and Standards

Codes or standards compliance may not be available with all model configurations - consult factory for availability.

ISO 9001	This generator set is designed in facilities certified to ISO 9001 and manufactured in facilities certified to ISO 9001 or ISO 9002.		The PowerCommand control is Listed to UL 508 - Category NITW7 for U.S. and Canadian usage.
F	The Prototype Test Support (PTS) program verifies the performance integrity of the generator set design. Cummins products bearing the PTS symbol meet the prototype test requirements of NFPA 110 for Level 1 systems.	U.S. EPA	Engine certified to Stationary Emergency U.S. EPA New Source Performance Standards,40 CFR 60 subpart IIII Tier 3 exhaust emission levels. U.S. applications must be applied per this EPA regulation.
SP°	All low voltage models are CSA certified to product class 4215-01.	International Building Code	The generator set package is available certified for seismic application in accordance with the following International Building Code: IBC2000, IBC2003, IBC2006, IBC2009 and IBC2012.

Warning: Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any building's electrical system except through an approved device or after building main switch is open.

For more information contact your local Cummins distributor or visit <u>power.cummins.com</u>

Our energy working for you.™

©2022 Cummins Inc. All rights reserved. Cummins is a registered trademark of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins Inc. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. S-1585.DOCX (02/22)

Generator set data sheet

Model:	DQDAC
Frequency:	60 Hz
Fuel type:	Diesel
kW rating:	300 Standby
	270 Prime
Emissions level:	EPA NSPS Stationary Emergency Tier 3

Exhaust emission data sheet:	EDS-1073
Exhaust emission compliance sheet:	EPA-1101
Sound performance data sheet:	MSP-1030
Cooling performance data sheet:	MCP-150
Prototype test summary data sheet:	PTS-164
Standard set-mounted radiator cooling outline:	A048R355
Optional set-mounted radiator cooling outline with seismic feature codes L228-2 (IBC) or L225-2 (OSHPD):	A041F591

	Stand	by			Prime				Continuous
Fuel consumption	kW (k	VA)			kW (k	VA)			kW (kVA)
Ratings	300 (3	375)			270 (3	38)			
Load	1/4	1/2	3/4	Full	1/4	1/2	3/4	Full	Full
US gph	6.8	12.2	17.7	23.1	6.3	11.1	15.9	20.8	
L/hr	25.8	46.3	66.8	87.3	23.6	42.0	60.3	78.7	

Engine	Standby rating	Prime rating	Continuous rating
Engine manufacturer	Cummins Inc.		
Engine model	QSL9-G7		
Configuration	Cast iron, in-line	6 cylinder	
Aspiration	Turbocharged an	d CAC	
Gross engine power output, kW _m (bhp)	346 (464)	312 (419)	
BMEP at set rated load, kPa (psi)	2606 (378)	2351 (341)	
Bore, mm (in.)	114.0 (4.49)	·	
Stroke, mm (in.)	145 (5.69)		
Rated speed, rpm	1800		
Piston speed, m/s (ft/min)	8.7 (1707.0)		
Compression ratio	16.1:1		
Lube oil capacity, L (qt)	30.0 (31.7)	30.0 (31.7)	
Overspeed limit, rpm	2070 ± 50		
Regenerative power, kW	35.00		

Fuel flow

Maximum fuel flow, L/hr (US gph)	156.7 (41.4)	
Maximum fuel inlet restriction, mm Hg (in Hg)	152.4 (6.0)	
Maximum return restriction, mm Hg (in Hg)	254.0 (10.0)	

Air	Standby rating	Prime rating	Continuous rating
Combustion air, m ³ /min (scfm)	25.1 (885.8)	23.2 (820.7)	
Maximum air cleaner restriction, kPa (in H ₂ O)	6.2 (25.0)		
Alternator cooling air, m ³ /min (cfm)	59.4 (2100.0)		

Exhaust

Exhaust flow at set rated load, m ³ /min (cfm)	65.0 (2296)	60.5 (2137)	
Exhaust temperature, °C (°F)	551.8 (1025)	515.9 (961)	
Maximum back pressure, kPa (in H ₂ O)	10.2 (41.0)		

Standard set-mounted radiator cooling (non-seismic)

Ambient design, °C (°F)	50 (122)		
Fan load, kW _m (HP)	26.09 (35)		
Coolant capacity (with radiator), L (US gal)	34.29 (9.06)		
Cooling system air flow, m ³ /min (scfm)	427.58 (15100)		
Total heat rejection, MJ/min (Btu/min)	10.5 (9924.0)	9.3 (8727.0)	
Maximum cooling air flow static restriction, kPa (in H ₂ O)	0.12 (0.5)		

Optional set-mounted radiator cooling (with seismic feature codes L228-2 (IBC) and/or L225-2 (OSHPD)

Ambient design, °C (°F)	40 (104)		
Fan Ioad, kW _m (HP)	27.8 (37.2)		
Coolant capacity (with radiator), L (US gal)	30.3 (8.0)		
Cooling system air flow, m ³ /min (scfm)	568.1 (20075.0)		
Total heat rejection, MJ/min (Btu/min)	10.5 (9924.0)	9.3 (8727.0)	
Maximum cooling air flow static restriction, kPa (in H ₂ O)	0.12 (0.5)		

Optional heat exchanger cooling	Standby rating	Prime rating	Continuous rating
Set coolant capacity, L (US gal)			
Heat rejected, jacket water circuit, MJ/min (Btu/min)			
Heat rejected, aftercooler circuit, MJ/min (Btu/min)			
Heat rejected, fuel circuit, MJ/min (Btu/min)			
Total heat radiated to room, MJ/min (Btu/min)			
Maximum raw water pressure, jacket water circuit, kPa (psi)			
Maximum raw water pressure, aftercooler circuit, kPa (psi)			
Maximum raw water pressure, fuel circuit, kPa (psi)			
Maximum raw water flow, jacket water circuit, L/min (US gal/min)			
Maximum raw water flow, aftercooler circuit, L/min (US gal/min)			
Maximum raw water flow, fuel circuit, L/min (US gal/min)			
Minimum raw water flow at 27 °C (80 °F) inlet temp, jacket water circuit, L/min (US gal/min)			
Minimum raw water flow at 27 °C (80 °F) inlet temp, aftercooler circuit, L/min (US gal/min)			
Minimum raw water flow at 27 °C (80 °F) inlet temp, fuel circuit, L/min (US gal/min)			
Raw water delta P at min flow, jacket water circuit, kPa (psi)			
Raw water delta P at min flow, aftercooler circuit, kPa (psi)			
Raw water delta P at min flow, fuel circuit, kPa (psi)			
Maximum jacket water outlet temp, °C (°F)			
Maximum aftercooler inlet temp, °C (°F)			
Maximum aftercooler inlet temp at 25 °C (77 °F) ambient, °C (°F)			

Optional remote radiator cooling¹

Set coolant capacity, L (US gal)	
Max flow rate at max friction head, jacket water circuit, L/min (US gal/min)	
Max flow rate at max friction head, aftercooler circuit, L/min (US gal/min)	
Heat rejected, jacket water circuit, MJ/min (Btu/min)	
Heat rejected, aftercooler circuit, MJ/min (Btu/min)	
Heat rejected, fuel circuit, MJ/min (Btu/min)	
Total heat radiated to room, MJ/min (Btu/min)	
Maximum friction head, jacket water circuit, kPa (psi)	
Maximum friction head, aftercooler circuit, kPa (psi)	
Maximum static head, jacket water circuit, m (ft)	
Maximum static head, aftercooler circuit, m (ft)	•
Maximum jacket water outlet temp, °C (°F)	
Maximum aftercooler inlet temp at 25 °C (77 °F) ambient, °C (°F)	
Maximum aftercooler inlet temp, °C (°F)	
Maximum fuel flow, L/hr (US gph)	
Maximum fuel return line restriction, kPa (in Hg)	

Unit dry weight kgs (lbs) Unit wet weight kgs (lbs) Refer to drawings for specific weights and dimensions	Weights ²	
Unit wet weight kgs (lbs)		. .
	Unit wet weight kgs (lbs)	weights and dimensions

Notes:

- ¹ For non-standard remote installations contact your local Cummins representative.
- ² Weights represent a set with standard features. See outline drawing for weights of other configurations.

Derating factors

Standby	Engine power available up to 549 m (1800 ft) at ambient temperature up to 40 $^{\circ}$ C (104 $^{\circ}$ F). Above these elevations, derate at 7% per 400 m (1312 ft). Above 40 $^{\circ}$ C (104 $^{\circ}$ F) derate 7% per 10 deg C (18 deg F). Derates must be combined when both altitude of 549 m (1800 ft) and temperature of 40 $^{\circ}$ C (104 $^{\circ}$ F) are exceeded.
Prime	Engine power available up to 500 m (1640 ft) at ambient temperature up to 40 °C (104 °F). Above these elevations, derate at 7% per 400 m (1312 ft). Above 40 °C (104 °F), derate 5.5% per 10 °C (18 °F). Derates must be combined when both altitude of 500 m (1640 ft) and temperature of 40 °C (104 °F) are exceeded.
Continuous	

Ratings definitions

Emergency Standby Power (ESP):	Limited-Time Running Power (LTP):	Prime Power (PRP):	Base Load (Continuous) Power (COP):
Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power to a constant electrical load for limited hours. Limited-Time Running Power (LTP) is in accordance with ISO 8528.	Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) is in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271 and BS 5514.

Alternator data

ARCIII		ala										/	-
Three phat table ¹	se	80 °C	80 °C	105 °C	105 °C	105 °C	125 °C	125 °C	125 °C	125 °C	125 °C		
Feature co	de	B254	B302	B259	B259 B256 B301 B258 B252 B246 E								
Alternator of sheet number		342	342	342	342 342 341 342 341 341 34								
				110/190	120/208		110/190	120/208	Γ				
Voltage rar	iges	277/480	347/600		Refer to alternator						347/600		
					datasheet for project								
Surge kW		322	322	spe	specific temperature ratings						322		
Motor													
starting kVA	Shunt												
(at 90% sustained voltage)	PMG	1372	1372	1372	1372	1210	1372	1210	1210	1210	1210		
												\searrow	
Full load ce amps at Sta rating		<u>120/208</u> 1042	<u>127/220</u> 985	<u>139/240</u> 903									

Note:

¹ Single phase power can be taken from a three phase generator set at up to 40% of the generator set nameplate kW rating at unity power factor.

Formulas for calculating full load currents:

Three phase output	Three	phase	output
--------------------	-------	-------	--------

Single phase output

kW x 1000 Voltage x 1.73 x 0.8 kW x SinglePhaseFactor x 1000 Voltage

Warning: Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any building's electrical system except through an approved device or after building main switch is open.

For more information contact your local Cummins distributor or visit power.cummins.com

Our energy working for you.™

©2017 Cummins Inc. All rights reserved. Cummins is a registered trademark of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins Inc. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. D-3444 (10/17)

PowerCommand[®] 2.3 Control System

Control System Description

The PowerCommand control system is a microprocessor-based generator set monitoring, metering and control system designed to meet the demands of today's engine driven generator sets. The integration of all control functions into a single control system provides enhanced reliability and performance, compared to conventional generator set control systems. These control systems have been designed and tested to meet the harsh environment in which gensets are typically applied.

Features

- 320 x 240 pixels graphic LED backlight LCD.
- Multiple language support.
- AmpSentry™ protective relay true alternator overcurrent protection.
- Real time clock for fault and event time stamping.
- Exerciser clock and time of day start/stop.
- Digital voltage regulation. Three phase full wave FET type regulator compatible with either shunt or PMG systems.
- Generator set monitoring and protection.
- 12 and 24 VDC battery operation.
- Modbus[®] interface for interconnecting to customer equipment.
- Warranty and service. Backed by a comprehensive warranty and worldwide distributor service network.
- Certifications suitable for use on generator sets that are designed, manufactured, tested and certified to relevant UL, NFPA, ISO, IEC, Mil Std., CE, UKCA and CSA standards.

PowerCommand Digital Genset Control PCC 2300

Description

The PowerCommand generator set control is suitable for use on a wide range of generator sets in non-paralleling applications. The PowerCommand control is compatible with shunt or PMG excitation style. It is suitable for use with reconnectable or non-reconnectable generators, and it can be configured for any frequency, voltage and power connection from 120-600 VAC Line-to-Line.

Power for this control system is derived from the generator set starting batteries. The control functions over a voltage range from 8 VDC to 30 VDC.

Features

- 12 and 24 VDC battery operation.
- Digital voltage regulation Three phase full wave FET type regulator compatible with either shunt or PMG systems. Sensing is three phase.
- Full authority engine communications (where applicable) Provides communication and control with the Engine
- due to thermal Control Module (ECM).
- AmpSentry" protection provides industry-leading alternator overcurrent protection:
 - Time-based generator protection applicable to both line-to-line and line-to-neutral, that can detect an unbalanced fault condition and swiftly react appropriately. Balanced faults can also be detected by AmpSentry and appropriate acted upon.
- Reduces the risk of Arc Flash overload or electrical faults by inverse time protection
- Common harnessing with higher feature Cummins controls. Allows for easy field upgrades.
- Generator set monitoring Monitors status of all critical engine and alternator functions.
- Digital genset metering (AC and DC).
- Genset battery monitoring system to sense and warn against a weak battery condition.
- Configurable for single or three phase AC metering.
- Engine starting Includes relay drivers for starter, Fuel Shut Off (FSO), glow plug/spark ignition power and switch B+ applications.
- Generator set protection Protects engine and alternator.
- Real time clock for fault and event time stamping.
- Exerciser clock and time of day start/stop.
- Advanced serviceability using InPower™, a PC-based software service tool.

- Environmental protection The control system is designed for reliable operation in harsh environments. The main control board is a fully encapsulated module that is protected from the elements.
- Modbus interface for interconnecting to customer equipment.
- Configurable inputs and outputs Four discrete inputs and four dry contact relay outputs.
- Warranty and service Backed by a comprehensive warranty and worldwide distributor service network.
- Certifications Suitable for use on generator sets that are designed, manufactured, tested and certified to relevant UL, NFPA, ISO, IEC, Mil Std., CE and CSA standards.

Base Control Functions

HMI Capability

<u>Operator adjustments</u> - The HMI includes provisions for many set up and adjustment functions.

<u>Generator set hardware data</u> - Access to the control and software part number, generator set rating in kVA and generator set model number is provided from the HMI or InPower.

Data logs - Includes engine run time, controller on time, number of start attempts, total kWh, and load profile (control logs data indicating the operating hours at percent of rated kW load, in 5% increments. The data is presented on the operation panel based on total operating hours on the generator.)

<u>Fault history</u> - Provides a record of the most recent fault conditions with control date and time stamp. Up to 32 events are stored in the control non-volatile memory.

Alternator data

- Voltage (single or three phase Line-to-Line and Line-to-Neutral)
- Current (single or three phase)
- kW, kVar, power factor, kVA (three phase and total)
- Frequency

<u>AmpSentry:</u> 3x current regulation for downstream tripping/motor inrush management. Thermal damage curve (3-phase short) or fixed timer (2 sec for 1- Phase Short or 5 sec for 2-Phase short).

Engine data

- Starting battery voltage
- Engine speed
- Engine temperature
- Engine oil pressure
- Engine oil temperature
- Intake manifold temperature
- Comprehensive Full Authority Engine (FAE) data (where applicable)

<u>Service adjustments</u> - The HMI includes provisions for adjustment and calibration of generator set control functions. Adjustments are protected by a password. Functions include:

Service adjustments (continued)

- Engine speed governor adjustments
- Voltage regulation adjustments
- Cycle cranking
- Configurable fault set up
- Configurable output set up
- Meter calibration
- Display language and units of measurement

Engine Control

<u>SAE-J1939 CAN</u> interface to full authority ECMs (where applicable). Provides data swapping between genset and engine controller for control, metering and diagnostics.

<u>12 VDC/24 VDC battery operations</u> - PowerCommand will operate either on 12 VDC or 24 VDC batteries.

<u>Temperature dependent governing dynamics</u> (with electronic governing) - modifies the engine governing control parameters as a function of engine temperature. This allows the engine to be more responsive when warm and more stable when operating at lower temperature levels.

<u>Isochronous governing</u> - (where applicable) Capable of controlling engine speed within +/-0.25% for any steady state load from no load to full load. Frequency drift will not exceed +/-0.5% for a 33 °C (60 °F) change in ambient temperature over an 8 hour period.

<u>Droop electronic speed governing</u> - Control can be adjusted to droop from 0 to 10% from no load to full load. <u>Remote start mode</u> - It accepts a ground signal from remote devices to automatically start the generator set and immediately accelerate to rated speed and voltage. The remote start signal will also wake up the control from sleep mode. The control can incorporate a time delay start and stop.

<u>Remote and local emergency stop</u> - The control accepts a ground signal from a local (genset mounted) or remote (facility mounted) emergency stop switch to cause the generator set to immediately shut down. The generator set is prevented from running or cranking with the switch engaged. If in sleep mode, activation of either emergency stop switch will wakeup the control.

<u>Sleep mode</u> - The control includes a configurable low current draw state to minimize starting battery current draw when the genset is not operating. The control can also be configured to go into a low current state while in auto for prime applications or applications without a battery charger.

Engine starting - The control system supports automatic engine starting. Primary and backup start disconnects are achieved by one of two methods: magnetic pickup or main alternator output frequency. The control also supports configurable glow plug control when applicable.

<u>Cycle cranking</u> - Is configurable for the number of starting cycles (1 to 7) and duration of crank and rest periods. Control includes starter protection algorithms to prevent the operator from specifying a starting sequence that might be damaging. <u>Time delay start and stop (cooldown)</u> - Configurable for time delay of 0-300 seconds prior to starting after receiving a remote start signal and for time delay of 0-600 seconds prior to shut down after signal to stop in normal operation modes. Default for both time delay periods is 0 seconds.

Alternator Control

The control includes an integrated three phase Line-to-Line sensing voltage regulation system that is compatible with shunt or PMG excitation systems. The voltage regulation system is a three phase full wave rectified and has an FET output for good motor starting capability. Major system features include:

<u>Digital output voltage regulation</u> - Capable of regulating output voltage to within +/-1.0% for any loads between no load and full load. Voltage drift will not exceed +/- 1.5% for a 40 °C (104 °F) change in temperature in an eight hour period. On engine starting or sudden load acceptance, voltage is controlled to a maximum of 5% overshoot over nominal level. The automatic voltage regulator feature can be disabled to allow the use of an external voltage regulator.

<u>Droop voltage regulation</u> - Control can be adjusted to droop from 0-10% from no load to full load.

<u>Torque-matched V/Hz overload control</u> - The voltage rolloff set point and rate of decay (i.e. the slope of the V/Hz curve) is adjustable in the control.

<u>Fault current regulation</u> - PowerCommand will regulate the output current on any phase to a maximum of three times rated current under fault conditions for both single phase and three phase faults. In conjunction with a permanent magnet generator, it will provide three times rated current on all phases for motor starting and short circuit coordination purpose.

Protective Functions

On operation of a protective function the control will indicate a fault by illuminating the appropriate status LED on the HMI, as well as display the fault code and fault description on the LCD. The nature of the fault and time of occurrence are logged in the control. The service manual and InPower service tool provide service keys and procedures based on the service codes provided. Protective functions include:

Battle Short Mode

When enabled and the *battle short* switch is active, the control will allow some shutdown faults to be bypassed. If a bypassed shutdown fault occurs, the fault code and description will still be annunciated, but the genset will not shutdown. This will be followed by a *fail to shutdown* fault. Emergency stop shutdowns and others that are critical for proper operation are not bypassed. Please refer to the control application guide or manual for list of these faults.

Derate

The derate function reduces output power of the genset in response to a fault condition. If a derate command occurs while operating on an isolated bus, the control will issue commands to reduce the load on the genset via contact closures or modbus.

Configurable Alarm and Status Inputs

The control accepts up to four alarm or status inputs (configurable contact closed to ground or open) to indicate a configurable (customer-specified) condition.

The control is programmable for warning, shutdown or status indication and for labeling the input.

Emergency Stop

Annunciated whenever either emergency stop signal is received from external switch.

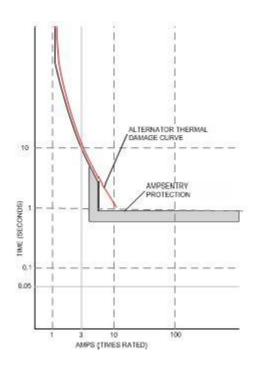
Full Authority Electronic Engine Protection

Engine fault detection is handled inside the engine ECM. Fault information is communicated via the SAE-J1939 data link for annunciation in the HMI.

General Engine Protection

Low and high battery voltage warning - Indicates status of battery charging system (failure) by continuously monitoring battery voltage.

<u>Weak battery warning</u> - The control system will test the battery each time the generator set is signaled to start and indicate a warning if the battery indicates impending failure.


Fail to start (overcrank) shutdown - The control system will indicate a fault if the generator set fails to start by the completion of the engine crack sequence.

Fail to crank shutdown - Control has signaled starter to crank engine but engine does not rotate.

<u>Cranking lockout</u> - The control will not allow the starter to attempt to engage or to crank the engine when the engine is rotating.

Alternator Protection

<u>AmpSentry protective relay</u> - A comprehensive monitoring and control system integral to the PowerCommand Control System that guards the electrical integrity of the alternator and power system by providing protection against a wide array of fault conditions in the generator set or in the load. It also provides single and three phase fault current regulation so that downstream protective devices have the maximum current available to quickly clear fault conditions without subjecting the alternator to potentially catastrophic failure conditions. Thermal damage curve (3-Phase short) or fixed timer (2 sec for 1-Phase short, 5 sec for 2-Phase short). See document R1053 for a full-size time over current curve.

<u>AmpSentry Maintenance Mode (AMM)</u> - Instantaneous tripping, if AmpSentry Maintenance mode is active (50mS response to turn off AVR excitation/shutdown genset) for arc flash reduction when personnel are near genset.

<u>High AC voltage shutdown (59)</u> - Output voltage on any phase exceeds preset values. Time to trip is inversely proportional to amount above threshold. Values adjustable from 105-125% of nominal voltage, with time delay adjustable from 0.1-10 seconds. Default value is 110% for 10 seconds.

Low AC voltage shutdown (27) - Voltage on any phase has dropped below a preset value. Adjustable over a range of 50-95% of reference voltage, time delay 2-20 seconds. Default value is 85% for 10 seconds. Function tracks reference voltage. Control does not nuisance trip when voltage varies due to the control directing voltage to drop, such as during a V/Hz roll-off during synchronizing.

<u>Under frequency shutdown (81 u)</u> - Generator set output frequency cannot be maintained. Settings are adjustable from 2-10 Hz below reference governor set point, for a 5- 20 second time delay. Default: 6 Hz, 10 seconds.

Under frequency protection is disabled when excitation is switched off, such as when engine is operating in idle speed mode.

Over frequency shutdown/warning (81 o) - Generator set is operating at a potentially damaging frequency level. Settings are adjustable from 2-10 Hz above nominal governor set point for a 1-20 second time delay. Default: 6 Hz,

20 seconds, disabled.

<u>Overcurrent warning/shutdown</u> - Thresholds and time delays are configurable. Implementation of the thermal damage curve with instantaneous trip level calculated based on current transformer ratio and application power rating.

Loss of sensing voltage shutdown - Shutdown of generator set will occur on loss of voltage sensing inputs to the control.

<u>Field overload shutdown</u> - Monitors field voltage to shutdown generator set when a field overload condition occurs.

Over load (kW) warning - Provides a warning indication when engine is operating at a load level over a set point.

Adjustment range: 80-140% of application rated kW, 0-120 second delay. Defaults: 105%, 60 seconds.

<u>Reverse power shutdown (32)</u> - Adjustment range: 5-20% of standby kW rating, delay 1-15 seconds. Default: 10%, 3 seconds.

<u>Reverse Var shutdown</u> - Shutdown level is adjustable: 15-50% of rated Var output, delay 10-60 seconds. Default: 20%, 10 seconds.

<u>Short circuit protection</u> - Output current on any phase is more than 175% of rating and approaching the thermal damage point of the alternator. Control includes algorithms to protect alternator from repeated over current conditions over a short period of time.

Field Control Interface

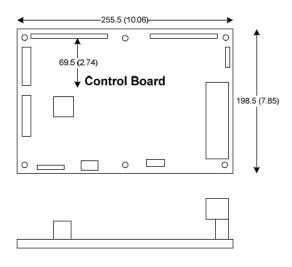
Input signals to the PowerCommand control include:

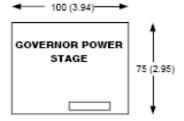
- Coolant level (where applicable)
- Fuel level (where applicable)
- Remote emergency stop
- Remote fault reset
- Remote start
- Battleshort
- Rupture basin
- Start type signal
- Configurable inputs Control includes (4) input signals from customer discrete devices that are configurable for warning, shutdown or status indication, as well as message displayed

Output signals from the PowerCommand control include:

- Load dump signal: Operates when the generator set is in an overload condition.
- Delayed off signal: Time delay based output which will continue to remain active after the control has removed the run command. Adjustment range: 0 – 120 seconds. Default: 0 seconds.

- Configurable relay outputs: Control includes (4) relay output contacts (3 A, 30 VDC). These outputs can be configured to activate on any control warning or shutdown fault as well as ready to load, not in auto, common alarm, common warning and common shutdown.
- Ready to load (generator set running) signal: Operates when the generator set has reached 90% of rated speed and voltage and latches until generator set is switched to off or idle mode.


Communications Connections Include:


- PC tool interface: This RS-485 communication port allows the control to communicate with a personal computer running InPower software.
- Modbus RS-485 port: Allows the control to communicate with external devices such as PLCs using Modbus protocol.

Note - An RS-232 or USB to RS-485 converter is required for communication between PC and control.

 Networking: This RS-485 communication port allows connection from the control to the other Cummins products.

Mechanical Drawings

PowerCommand Human Machine Interface HMI320

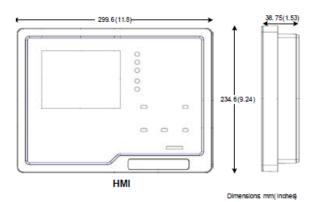
Description

This control system includes an intuitive operator interface panel that allows for complete genset control as well as system metering, fault annunciation, configuration and diagnostics. The interface includes five genset status LED lamps with both internationally accepted symbols and English text to comply with customer's needs. The interface also includes an LED backlit LCD display with tactile feel soft-switches for easy operation and screen navigation. It is configurable for units of measurement and has adjustable screen contrast and brightness.

The *run/off/auto* switch function is integrated into the interface panel.

All data on the control can be viewed by scrolling through screens with the navigation keys. The control displays the current active fault and a time-ordered history of the five previous faults.

Features


- LED indicating lamps:
 - Genset running
 - Remote start
- Not in auto
- Shutdown
- -Warning
- Auto
- Manual and stop
- 320 x 240 pixels graphic LED backlight LCD.
- Four tactile feel membrane switches for LCD defined operation. The functions of these switches are defined dynamically on the LCD.
- Seven tactile feel membrane switches dedicated screen navigation buttons for up, down, left, right, ok, home and cancel.
- Six tactile feel membrane switches dedicated to control for auto, stop, manual, manual start, fault reset and lamp test/panel lamps.

- Two tactile feel membrane switches dedicated to control of circuit breaker (where applicable).
- Allows for complete genset control setup.
- Certifications: Suitable for use on generator sets that are designed, manufactured, tested and certified to relevant UL, NFPA, ISO, IEC, Mil Std., CE and CSA standards.
- LCD languages supported: English, Spanish, French, German, Italian, Greek, Dutch, Portuguese, Finnish, Norwegian, Danish, Russian and Chinese Characters.

Communications connections include:

- PC tool interface This RS-485 communication port allows the HMI to communicate with a personal computer running InPower.
- This RS-485 communication port allows the HMI to communicate with the main control board.

Mechanical Drawing

Software

InPower (beyond 6.5 version) is a PC-based software service tool that is designed to directly communicate to PowerCommand generator sets and transfer switches, to facilitate service and monitoring of these products.

Environment

The control is designed for proper operation without recalibration in ambient temperatures from -40 °C to +70° C (-40 °F to 158 °F) and for storage from -55 °C to +80 °C (-67 °F to 176 °F). Control will operate with humidity up to 95%, non-condensing.

The HMI is designed for proper operation in ambient temperatures from -20 °C to +70 °C (-4 °F to 158 °F) and for storage from -30 °C to +80 °C (-22 °F to 176 °F).

The control board is fully encapsulated to provide superior resistance to dust and moisture. Display panel has a single membrane surface, which is impervious to effects of dust, moisture, oil and exhaust fumes. This panel uses a sealed membrane to provide long reliable service life in harsh environments.

The control system is specifically designed and tested for resistance to RFI/EMI and to resist effects of vibration to provide a long reliable life when mounted on a generator set. The control includes transient voltage surge suppression to provide compliance to referenced standards.

Certifications

PowerCommand meets or exceeds the requirements of the following codes and standards:

- NFPA 110 for level 1 and 2 systems.
- ISO 8528-4: 1993 compliance, controls and switchgear.
- CE marking: The CE marking is only valid when equipment is used in a fixed installation application. Material compliance declaration is available upon request.
- UKCA marking: The UKCA marking is only valid when equipment is used in a fixed installation application. Material compliance declaration is available upon request.
- EN50081-1,2 residential/light industrial emissions or industrial emissions.
- EN50082-1,2 residential/light industrial or industrial susceptibility.
- ISO 7637-2, level 2; DC supply surge voltage test.
- Mil Std 202C, Method 101 and ASTM B117: Salt fog test.
- UL 6200 recognized and suitable for use on UL 2200 Listed generator sets.
- CSA C282-M1999 compliance
- CSA 22.2 No. 14 M91 industrial controls.
- PowerCommand control systems and generator sets are designed and manufactured in ISO 9001 certified facilities.

Warranty

All components and subsystems are covered by an express limited one year warranty. Other optional and extended factory warranties and local distributor maintenance agreements are available.

For more information contact your local Cummins distributor or visit power.cummins.com

Our energy working for you.™

2024 EPA Tier 3 Exhaust Emission Compliance Statement 300DQDAC Stationary Emergency

60 Hz Diesel Generator Set

Compliance Information:

The engine used in this generator set complies with Tier 3 emissions limit of U.S. EPA New Source Performance Standards for stationary emergency engines under the provisions of 40 CFR 60 Subpart IIII.

Engine Manufacturer:	Cummins Inc.
EPA Certificate Number:	RCEXL0540AAB-009
Effective Date:	05/01/2023
Date Issued:	05/01/2023
EPA Engine Family (Cummins Emissions Family):	RCEXL0540AAB

Engine Information:

Model:	QSL/QSL9/QSL9-G7 NR3
Engine Nameplate HP:	464
Туре:	4 Cycle, In-line, 6 Cylinder Diesel
Aspiration:	Turbocharged and CAC
Emission Control Device:	

Bore:	4.49 in. (114 mm)
Stroke:	5.69 in. (145 mm)
Displacement:	543 cu. in. (8.9 liters)
Compression ratio:	16.1:1
Exhaust stack diameter:	6 in. (152 mm)

Diesel Fuel Emission Limits

D2 Cycle Exhaust Emissions	Gran	ns per BH	IP-hr	Grams per kWm-hr		
	<u>NOx +</u> <u>NMHC</u>	<u>co</u>	<u>PM</u>	<u>NOx +</u> NMHC	<u>co</u>	<u>PM</u>
EPA Emissions Limit	3.0	2.6	0.15	4.0	3.5	0.20

Test methods: EPA emissions recorded per 40 CFR Part 60, 89, 1039, 1065 and weighted at load points prescribed in the regulations for constant speed engines.

Diesel fuel specifications: Cetane number: 40-50, Reference: ASTM D975 No. 2-D, 300-500 ppm Sulfur

Reference conditions: Air Inlet Temperature: 25 °C (77 °F), Fuel Inlet Temperature: 40 °C (104 °F). Barometric Pressure: 100 kPa (29.53 in Hg), Humidity: 10.7 g/kg (75 grains H2O/lb) of dry air; required for NOx correction, Restrictions: Intake Restriction set to a maximum allowable limit for clean filter; Exhaust Back Pressure set to a maximum allowable limit.

Tests conducted using alternate test methods, instrumentation, fuel or reference conditions can yield different results. Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may result in elevated emission levels.

High Ambient Air Temperature Radiator Cooling System with Seismic (L228-2 or L225-2)

							atic restric er/mm wate			sed in free air, no air scharge restriction		
				0.0/0.0	0.25/6.4	0.5/12.7	0.75/19.1	1.0/25.4	Weather	Sound Level 1	Sound Level 2	
	Fuel Type	Duty	Rating (kW)	Maximum allowable ambient temperature, degree C								
60	Disasl	Standby	300	47	46	45	44	43	40	N/A	N/A	
Hz	Diesel	Prime	270	55	54	54	52	52	48	N/A	N/A	

High Ambient Air Temperature Radiator Cooling System

								atic restric er/mm wate			r, no air iction	
					0.0/0.0	0.25/6.4	0.5/12.7	0.75/19.1	1.0/25.4	Weather	Sound Level 1	Sound Level 2
		Fuel Type	Duty	Rating (kW)	Maximum allowable ambient temperature, degree C						ee C	
6	0	Dissel	Standby	300	55	55	54	52	49	49	N/A	N/A
H	lz	D <mark>iesel</mark>	Prime	270	55	55	54	52	50	50	N/A	N/A

Notes:

- 1. Data shown are anticipated cooling performance for typical generator set.
- 2. Cooling data is based on 1000 ft (305 m) site test location.
- 3. Generator set power output may need to be reduced at high ambient conditions. Consult generator set data sheet for derate schedules.
- 4. Cooling performance may be reduced due to several factors including but not limited to: Incorrect installation, improper operation, fouling of the cooling system, and other site installation variables.

Sound pressure level @ 7 meters, dB(A)

See notes	s 1-8 listed below	

Configuration		Measurement location number								Average
Configuration		1	2	3	4	5	6	7	8	Average
Standard – unhoused	Infinite exhaust	87	91	89	93	89	95	91	90	91
F183 – skin tight weather	Mounted muffler	88	91	91	94	90	95	91	92	92
F201 – quiet site II first stage	Mounted muffler	80	81	83	91	91	92	84	83	88
F202 – quiet site II second stage	Mounted muffler	73	75	74	72	74	73	70	71	73

Sound power level, dB(A)

See notes 2-6, 9,	10 listed below
-------------------	-----------------

				Octave	band cent	er frequen	icy (Hz)			Overall sound
Configuration		63	125	250	500	1000	2000	4000	8000	power level
Standard – unhoused	Infinite exhaust	80	94	108	111	113	111	107	108	118
F183 – skin tight weather	Mounted muffler	96	105	112	113	114	113	109	104	120
F201 – quiet site II first stage	Mounted muffler	105	112	108	110	110	108	104	98	117
F202 – quiet site II second Mounte stage muffler		85	94	93	96	98	98	94	87	104

Exhaust sound pressure level @ 1 meter, dB(A)

			Octave	band cent	ter frequen	cy (Hz)			Sound pressure
Open exhaust (no muffler) @ rated load	63	125	250	500	1000	2000	4000	8000	level
v v -	99	110	119	122	125	127	127	126	133.1

Note:

Position 1 faces the engine front. The positions proceed around the generator set in a counter-clockwise direction in 45° increments. 1.

All positions are at 7 m (23 ft) from the surface of the generator set and 1.2 m (48 in.) from floor level.

2 Sound levels are subject to instrumentation, measurement, installation and manufacturing variability.

3. Sound data with remote-cooled generator sets are based on rated loads without cooling fan noise.

Sound levels for aluminum enclosures are approximately 2 dB(A)s higher than listed sound levels for steel enclosures. 4.

Sound data for generator set with infinite exhaust do not include exhaust noise. 5.

Data is based on full rated load with standard radiator-cooling fan package. 6.

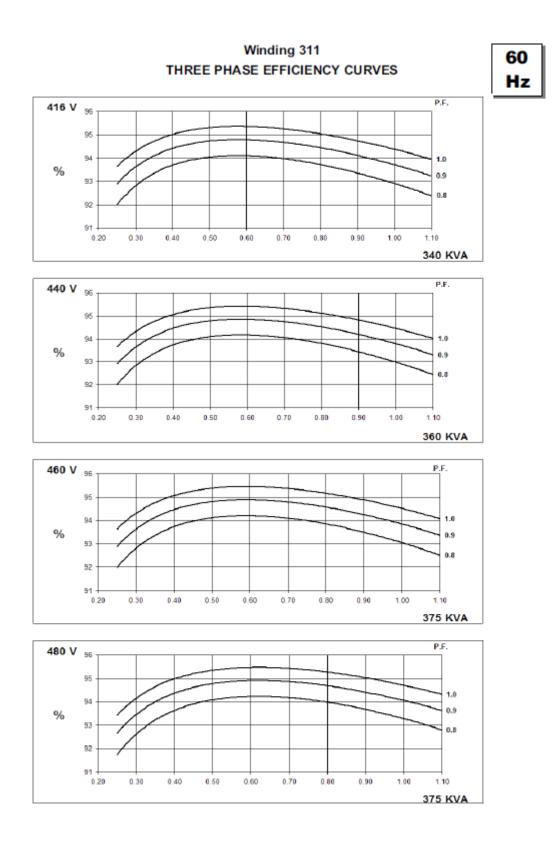
7. Sound pressure levels are measured per ANSI S1.13 and ANSI S12.18, as applicable.

8. Reference sound pressure is 20 µPa.

Sound power levels per ISO 3744 and ISO 8528-10, as applicable. Reference power = 1 pw (10^{-12} W) . 9.

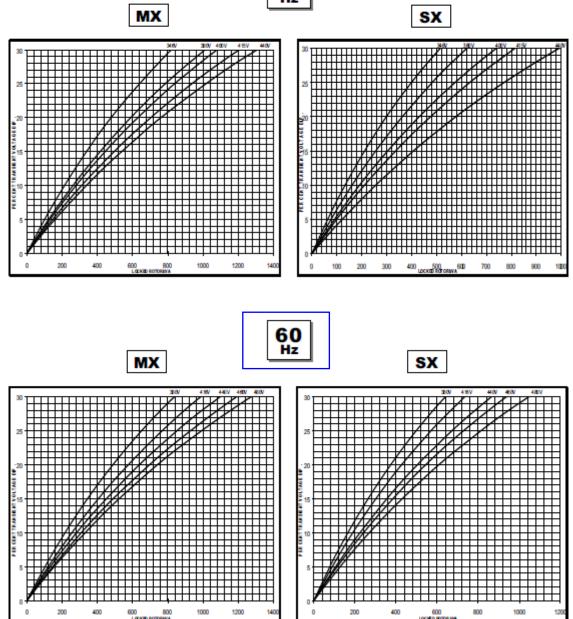
10.

11. Exhaust sound power levels are per ISO 6798, as applicable.

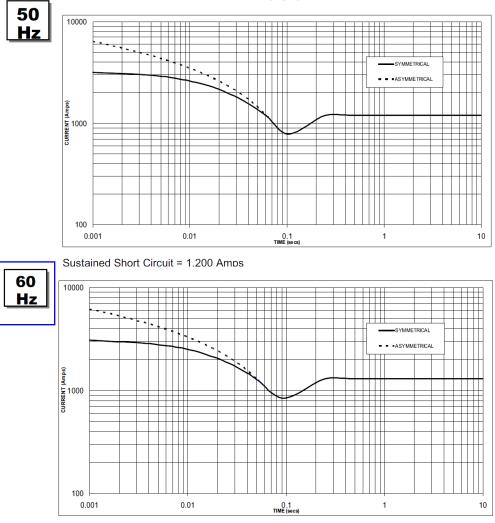


Frame size: HCI434D

Characteristics				1-bra w/c	oupling ada	apter					
Weights:	Stat	or assembl	<i>.</i>	926 lb			420 kg				
Treights.		or assembly	•	818 lb			371 kg				
		nplete asse		2097 lb			351 kg				
Maximum speed:	001		inory.	2037 lb 2250 rpr	n		551 Kg				
Excitation current:	Eull	load:		2200 Ipi 2.00 Am							
		oad:									
Inculation quatern.			· · f	0.50 Am	ρs						
Insulation system:	0.8 power	ss H throug					50.11				
3 Ø Ratings	factor)		60 Hz (win	ding no)			50 Hz	(winding no)			
(Based on specific temper rise at 40° C ambient tem		<u>110/190</u> <u>220/380</u> (311)	<u>120/208</u> <u>240/416</u> (311)	<u>139/240</u> 277/480 (311)	<u>347/600</u> (17)	<u>110/190</u> <u>220/380</u> (311)	<u>115/200</u> <u>230/400</u> (311)	<u>120/208</u> <u>240/415</u> (311)	<u>127/220</u> <u>254/440</u> (311)		
150° C rise ratings	kW	264	292	320	320	256	256	256	248		
	kVA	330	365	400	400	320	320	320	310		
125° C rise ratings	kW	248	275	300	300	240	240	240	232		
	kVA	310	344	375	375	300	300	300	290		
105° C rise ratings	kW	230	252	276	276	224	224	224	216		
	kVA	288	315	345	345	280	280	280	270		
80° C rise ratings	kW	200	218.4	240	240	192	192	192	182.4		
	kVA	250	273	300	300	240	240	240	228		
Reactances	(per unit ± 10%)	<u>110/190</u> <u>220/380</u> (311)	<u>120/208</u> <u>240/416</u> (311)	<u>139/240</u> <u>277/480</u> (311)	<u>347/600</u> (07)	<u>110/190</u> <u>220/380</u> (311)	<u>115/200</u> <u>230/400</u> (311)	<u>120/208</u> <u>240/415</u> (311)	<u>127/220</u> <u>254/440</u> (311)		
(Based on full load at 125 rating)	° C rise										
Synchronous		3.89	3.60	2.95	2.97	3.16	2.85	265	2.28		
Transient		0.24	0.22	0.18	0.18	0.20	0.18	0.17	0.15		
Subtransient		0.16	0.15	0.12	0.13	0.14	0.13	0.12	0.10		
Negative sequence		0.30	0.28	0.23	0.23	0.26	0.24	0.22	0.19		
Zero sequence		0.11	0.10	0.08	0.08	0.10	0.09	0.08	0.07		
Motor starting			<u>Broad Range</u>		<u>600</u>		Broad	<u>d Range</u>			
Maximum kVA (90% sustained voltage	e)		1028		1028			762			
Time			Broad Range		<u>600</u>		Broad	<u>Range</u>			
constants (sec)											
Transient			0.080		0.080		0.0	080			
Subtransient 0.019				0.019		0.0	19				
Open circuit			1.700		1.700	1.700					
DC			0.018		0.018		0.0	18			



Frame size: HCI434D



Frame size: HCI434D

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 1,300 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

Ν	ote	2
	ole	-

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

50	Hz	60Hz					
Voltage	Factor	Voltage	Factor				
380v	X 1.00	416v	X 1.00				
400v	X 1.05	440v	X 1.06				
415v	X 1.09	460v	X 1.10				
440v	X 1.16	480v	X 1.15				

The sustained current value is constant irrespective of voltage level

	3-phase	2-phase L-L	1-phase L-N							
Instantaneous	x 1.00	x 0.87	x 1.30							
Minimum	x 1.00	x 1.80	x 3.20							
Sustained	x 1.00	x 1.50	x 2.50							
Max. sustained duration	10 sec.	5 sec.	2 sec.							
All other times are unchanged										

Note 3

Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

Parallel Star = Curve current value X 2 Series Delta = Curve current value X 1.732

Section 3 – Generator Drawings

\downarrow	4			5	ļ			6	PTC [®] Creo [®] Parametric	[
				LATION	TABU										
DIM_J MM [IN]	DIM_H MM [IN]	DIM_F MM [IN]	DIM_E MM [IN]	DIM_D MM [IN]	WEIGHTS KG [LBS] IFT BASE FUEL TANK DRY		FEATURE CODE TANK CAPACITY L								
4318 [170]	351 [13.8]	203.2 [8]	87 [3.4]	2029.7 [79.9]		576 [1270]		F 2 I 4	LIFT BASE						
4549 [179]	452 [17.8]	304.8 [12]	182 [7.2]	2131.3 [83.9]	954 [2103]		300	C201							
4549 [79]	502 [19.8]	355.6 [4]	233.6 [9.2]	2182.1 [85.9]	1019 [2246]		400	C 2 O 2							
4549 [79]	561 [22.1]	4 3 [6.3]	295 [11.6]	2240 [88.2]	1097 [2419]		500	C 2 O 3		D					
4549 [79]	630 [24.8]	482.6 [9]	360.6 [4.2]	2309.1 [90.9]	6 [2559]		600	C 2 0 4							
4549 [79]	674 [26.5]	527 [20.7]	409 [6.]	2353 [92.6]	98 [264]		660	C205	FUEL TANK						
4549 [79]	719 [28.3]	572 [22.5]	454 [7.9]	2398 [94.4]	243 [274]		720	C 2 0 6							
] 4976 [196]	1062 [41.8]	9 4.4 [36]	771 [30.4]	2740.9 [107.9]	788 [3943]		1420	C 32 I							
] 7290 [287]	1062 [41.8]	9 4.4 [36]	771 [30.4]	2740.9 [107.9]	2478 [5463]		2050	C 322							
4549 [79]	452 [17.8]	304.8 [2]	182 [7.2]	2 3 .3 [83.9]	939 [2071]		270	C 2 4 2							
]	1062 [41.8]	9 4.4 [36]	771 [30.4]	2740.9 [107.9]	2478 [5463]		2050	C322							

			TABULATION			
		WEIG	HT, BASE AND	GENSET		
FEATURE CODES	MODEL	ALT DATA SHEET	WEIGHT KG [LBS]	CG_DIM "A" MM [IN]	CG_DIM "B" MM [IN]	CG_DIM "C" MM [IN]
		340	2726 [6010]	1758.7 [69.3]	036. [40.8]	666.9 [26.3]
F214 W/F215	DQDAA, AB, AC	341	2810 [6196]	1782.3 [70.2]	1036.2 [40.8]	672. [26.5]
		342	2946 [6495]	1817.9 [71.6]	1036.4 [40.8]	679.8 [26.8]
	-	WEIGHT,	DRY TANK AND	WET GENSET	-	
FEATURE CODES	MODEL	ALT DATA SHEET	WEIGHT KG [LBS]	CG_DIM "A" MM [IN]	CG_DIM "B" MM [IN]	CG_DIM "C" MM [IN]
		340	3104 [6843]	73 .3 [68.2]	1054.7 [41.5]	550.6 [21.7]
C201 W/F215	DQDAA, AB, AC	341	3188 [7029]	1751.9 [69.0]	1054.4 [41.5]	558.2 [22.0]
		342	3324 [7329]	1783.5 [70.2]	1053.8 [41.5]	569.5 [22.4]
		340	3169 [6986]	1732.5 [68.2]	1054.1 [41.5]	530.6 [20.9]
C202 W/F215	DQDAA, AB, AC	341	3253 [7172]	1752.7 [69.0]	1053.8 [41.5]	538.5 [21.2]
		342	3389 [7472]	1783.7 [70.2]	1053.3 [41.5]	550.4 [21.7]
		340	3247 [7159]	1733 [68.2]	1052.8 [41.4]	510.8 [20.1]
C203 W/F215	DQDAA, AB, AC	341	3332 [7345]	1752.8 [69.0]	1052.5 [41.4]	519 [20.4]
		342	3468 [7645]	1783.3 [70.2]	1052.1 [41.4]	531.5 [20.9]
		340	3311 [7299]	1735.9 [68.3]	1052.2 [41.4]	479.9 [18.9]
C204 W/F215	DQDAA, AB, AC	341	3395 [7485]	755.2 [69.1]	1051.9 [41.4]	488.7 [9.2]
		342	3531 [7785]	1784.8 [70.3]	1051.5 [41.4]	502 [19.8]
		340	3348 [7381]	737. [68.4]	1051.7 [41.4]	464.5 [18.3]
C205 W/F215	DQDAA, AB, AC	341	3432 [7567]	756. [69.]	1051.4 [41.4]	473.5 [18.6]
		342	3568 [7867]	1785.3 [70.3]	1051 [41.4]	487.2 [19.2]
		340	3393 [7481]	1737.4 [68.4]	1051.9 [41.4]	449.9 [17.7]
C206 W/F215	DQDAA, AB, AC	341	3478 [7667]	756.2 [69.1]	1051.6 [41.4]	459.2 [8.]
		342	3614 [7967]	785. [70.3]	1051.2 [41.4]	473.2 [18.6]
		340	3939 [8683]	1897.2 [74.7]	1049.6 [41.3]	293.4 [.6]
C321 W/F215	DQDAA, AB, AC	341	4022 [8869]	1910.3 [75.2]	1049.4 [41.3]	304.9 [12.0]
		342	4159 [9169]	1930.8 [76.0]	049.2 [4 .3]	322.5 [12.7]
		340	4629 [10205]	3690.7 [45.3]	1048.5 [41.3]	198.2 [7.8]
C322 W/F215	DQDAA, AB, AC	341		3711.4 [146.1]	1048.3 [41.3]	209.7 [8.3]
		342	4849 [0690]	3744. [47.4]	048.2 [4 .3]	227.5 [9.0]
		340	3089 [6811]	1731.3 [68.2]	1054.7 [41.5]	550.6 [21.7]
C242 W/F215	DQDAA, AB, AC	341	3174 [6997]	1751.9 [69.0]	1054.4 [41.5]	558.2 [22.0]
		342	3310 [7297]	1783.5 [70.2]	1053.8 [41.5]	569.5 [22.4]
				H STANDARD FUEL	TANK	
			D WET GENSET. AY CHANGE THE	ADDITION OF WEIGHT AND CG 'S	S.	
L	=					

I. DIMENSIONS 2. FOUNDATION

NOTES:

3

3. FOR FEATUR 162.05 [6.

4. SEE SHEET

5. SUBBASE FUE EXCESSIVE T FOUNDATION, ENSURE THE TANK, THE F

5.I REFER T MOUNTIN

5.2 TIGHTEN

6. GENSET SUPP GENERATOR S

6.I FUEL SU FUEL RE

7. TABULATED

8. STUB UP ARE

8.I ELECTRI CIRCUIT FOR ELE

8.2 FUEL:

9. CONTROL INT CONNECTIONS

IO. ENTRANCE BO WILL BE MOU

II. EXHAUST COM

A DIM_A IS ME

		\$ · · · ·				_			
						UNL	ESS OTHERW	NISE SPECIFIED, ALL ARE IN MILLIMETERS	SIN TO A046S028
									DO NOT SCALE PRIN
						× ± 3 ≤ .× ± 0	·.8 및 5 19 10	0.00- 4.99 +0.15/-0.08 5.00- 9.99 +0.20/-0.10 0.00-17.49 +0.25/-0.13 7.50-24.99 +0.30/-0.13	$\bigcirc \bigcirc \bigcirc$
						. XX± 0	. 38		- CONFIDENTIAL
						ANG TOL: :	± 1.0°	SCALE: / 6	- CONFIDENTIAL PROPERTY OF CUMMINS POWER GENERATION GROU
6	5		4	\uparrow	× 3				2

C |

TANK

FEATURE CODF

C201

C202

C203

C204

C205

C206

C321

C322

TABULATION FOR CIRCUIT BREAKER HANDLE HEIGHT

NSJ/NLG FRAMF

|402 [55.2]

|453 [57.2]

1503 [59.2]

1580 [62.2]

1618 [63.7]

1656 [65.2]

2012 [79.2]

2012 [79.2]

F214 1300 [51.2]

DIM G

3-P, 800A

P FRAME

||82 [46.5]

|284 [50.6]

|335 [52.6]

|385 [54.5]

|462 [57.6]

|500 [59.|]

|538 [60.6]

|894 [74.6]

|894 [74.6]

C242 | 402 [55.2] | 284 [50.6] | 241 [48.9]

3-P, 1200A P FRAME

||39 [44.8]

|24| [48.9]

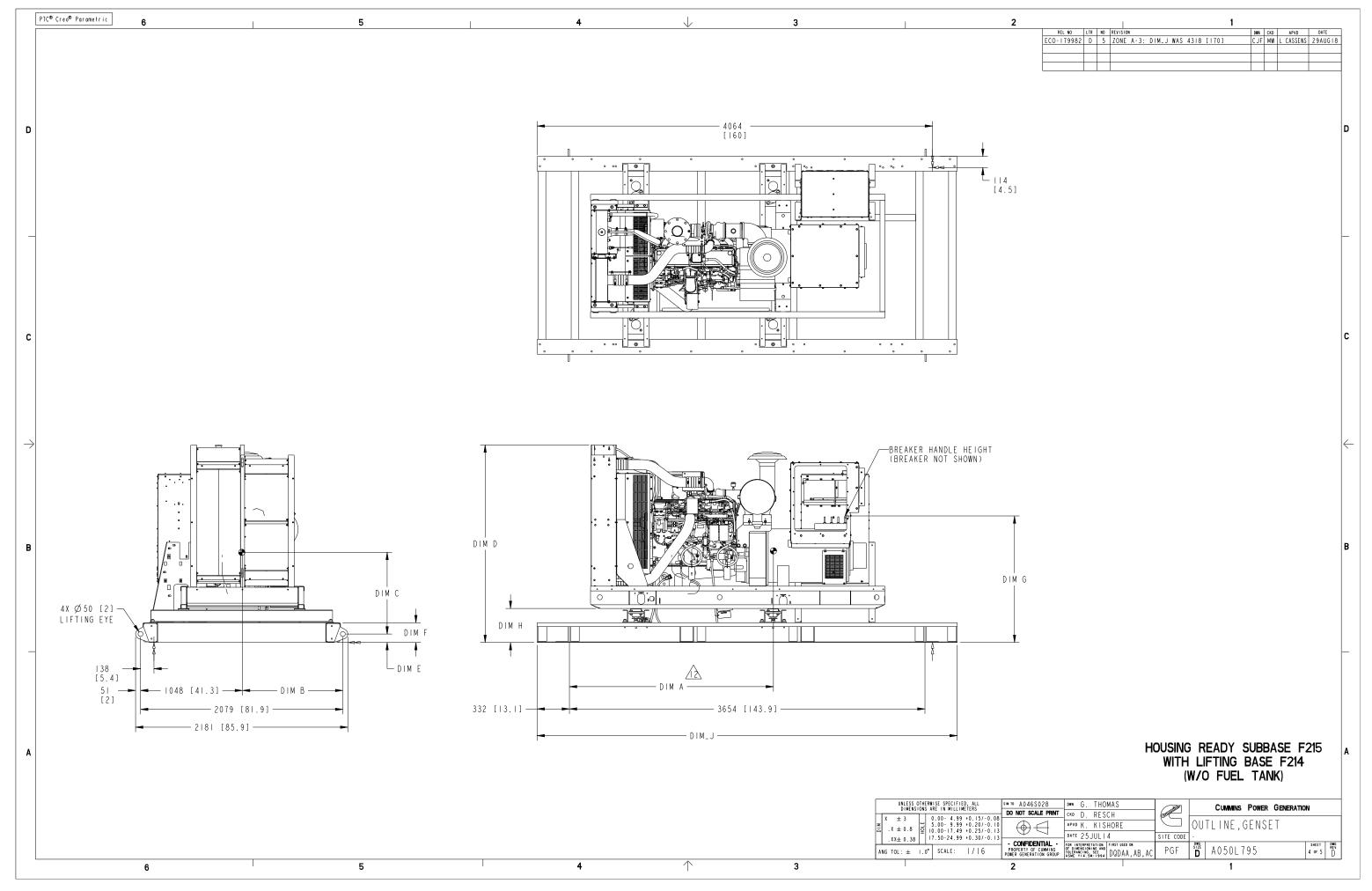
1292 [50.9]

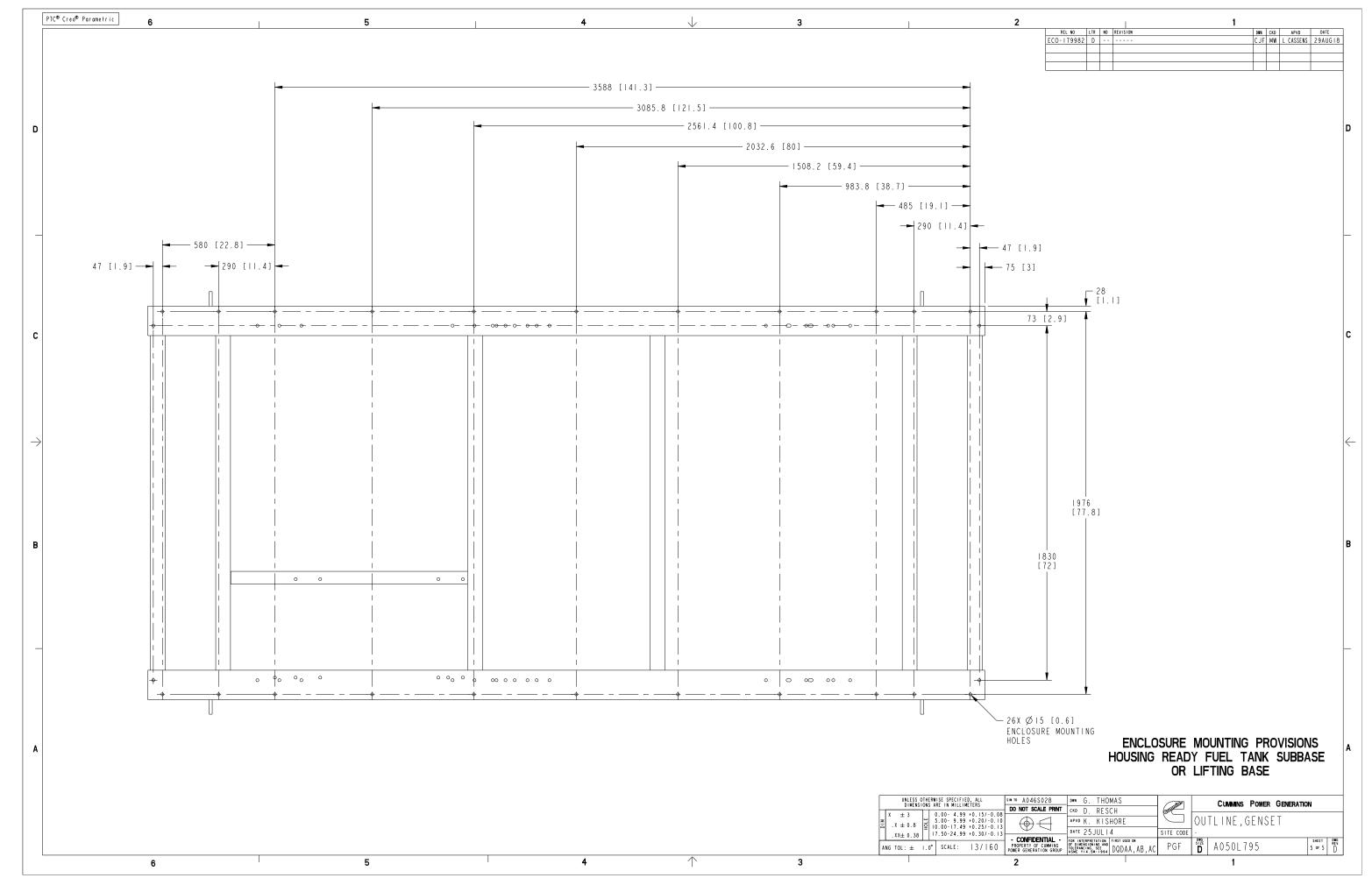
|342 [52.8]

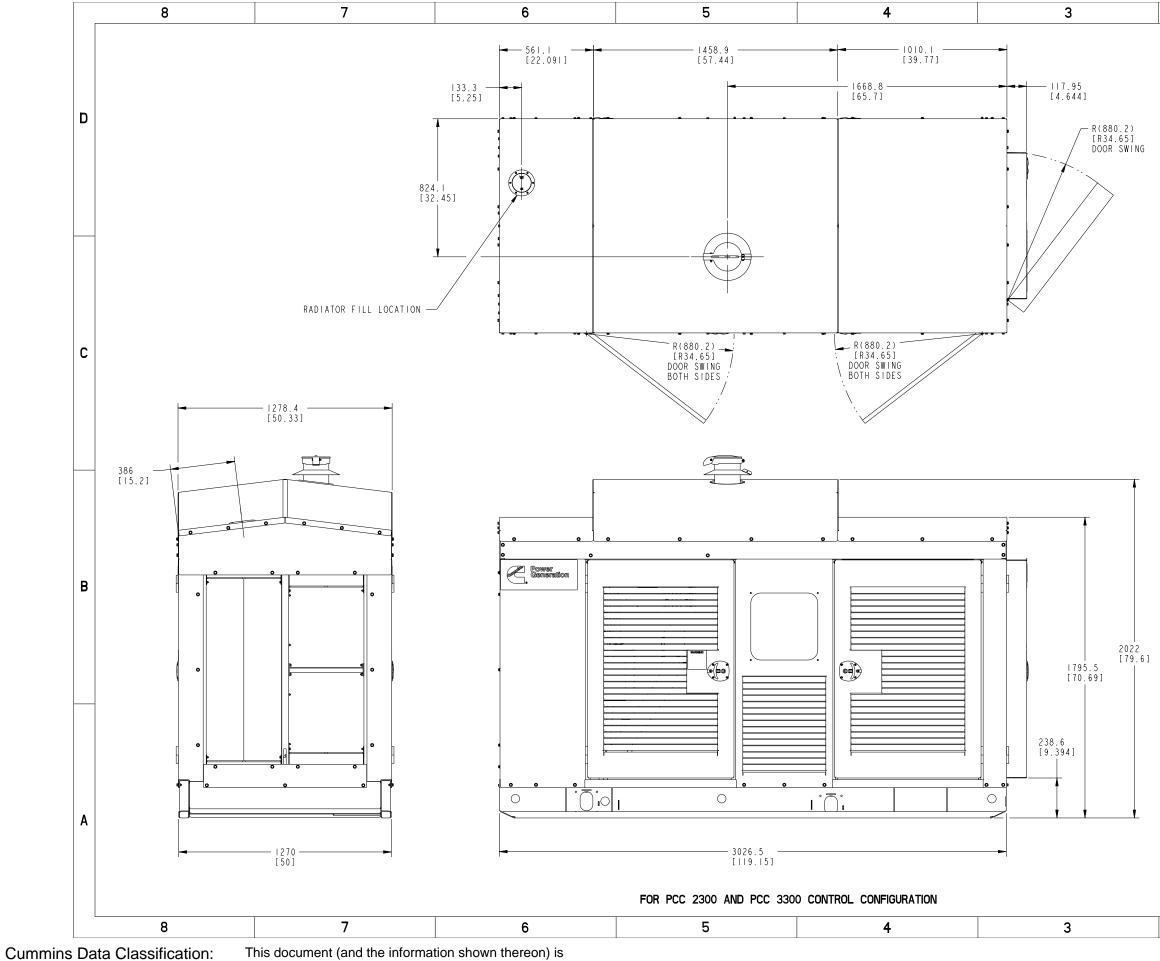
|4|9 [55.9]

|457 [57.4]

|495 [58.9]

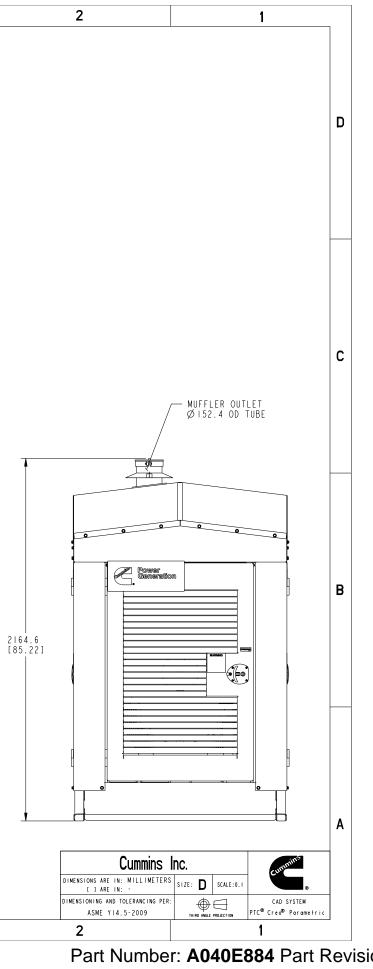

1851 [72.9]


1851 [72.9]

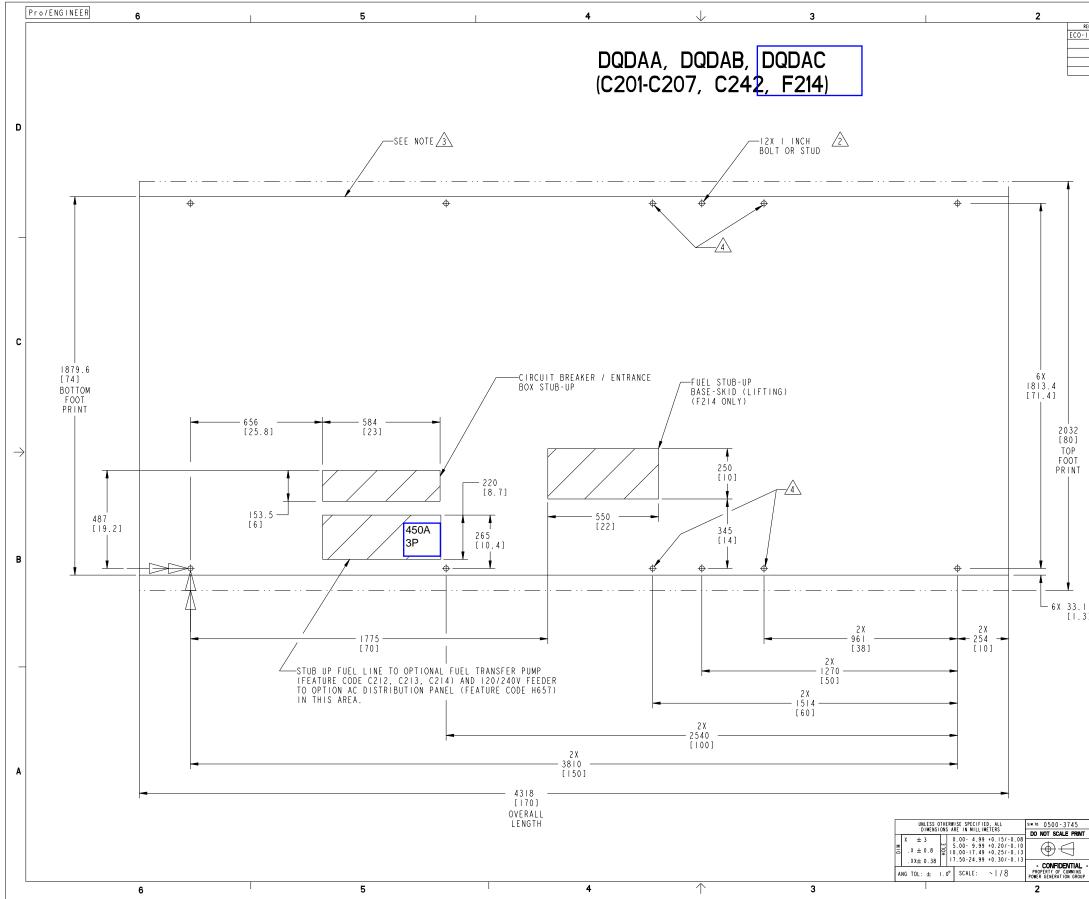

B

Α

2				1					1						
	REL NO ECO-179		_	REVISION	322 INF	O TO AL	I TABIII	ATION	s	DWN	CKD MW I	APVD CASSEN	DA S 29A		
	200 110		2	ZONE	D-4: A[D COLUM				CJF	MW	_ CASSEN	S 29A	UGI8	
			4	SEE S	HEET 2 HEET 3					CJF	MW I	_ CASSEN _ CASSEN	S 29A	UGI8	
					HEET 4 LAG NOT							<u>CASSEN</u> CASSEN			
															D
SIONS SH															
ATION RE	FERENC	CE PC) I N T	(—>>	⇒). SE	E FOUI	NDATIO	ON DR	AWIN	IG F	ORI	DETAI	LS.		
EATURE C 5 [6.38]						IDA AI	ND MI	CHIGA	N TA	NKS) A	DD			
						TIONS									
HEET 2 A				VENI	LOCA	TIONS	•								
E FUEL T. IVE TWIS				JEL T	ANK.	WHEN	ASTE	NING	IT T	O A					
TION, MA THE INS	Y RESL	ILT I	N ST	RUCT	URAL	FAILU	RE OF	THE	TANK	. T					
THE FOLL								131 1	пс r	UEL					
ER TO C	UMMINS	5 APP		TION	MANU	AL TO	30 FOI	R GEN	IERAL	GE	NSE	T/TAN	K		
JNTING G	UIDELI	NES.													
GHTEN TA	NK HOL	D DC	OWN N	IOUNT	ING F	ASTEN	ERS.								С
SUPPLIE					EL LI	NES TI	HAT C.	AN BE	CON	NEC	TED	ΤO			
FOR SET	INTERF	ACE	POIN	ITS.											
EL SUPPL El Retur															
FED WEIG	HI ANL	0 00	13 1	OKG	ENERA	104 31	- I W I	IH NC	OPI	TON	ა.				
P AREAS.															,
ECTRICAL RCUIT BR															\leftarrow
RELECTR						UNLA	VEN U	LCII	10 0	100	01	,			
EL: REFE	r to g	6 E N S E	Τ ΟΙ	JTLIN	E DRA	WINGS	FOR	UEL	STUB	-UP	AR	EAS.			
INTERF	ACE CC) NNEC		NS SH	OULD	BE MAI	DE WI	TH FL	EXIB	LE					
FIONS. N															
CE BOX (1				
E MOUNTE															В
F CONNEC	TION L	. OC A T	ING	DIME	NSION	S CAN	BE FO	DUND	ON A	041	F59	Ι.			
IS MEASU	RED TC) FUR	THES	ST LI	FTING	EYE I	BRACK	ET ON	EAC	HR	ESP	ECTIV	Ε ΤΑ	NK.	
															A
™™ A046S02	28 DV	w G.	THOM	IAS		লক্ষ		Cine	MING	Powe	יט א	ENERATIO	NI NI		
DO NOT SCALE	-	KD D. PVD K.				Granden	011	TLIN							
$\oplus \in$		ATE 25.				SITE COL	Ε·	ILIN	L,U	LINC	ΡĽΙ				
 CONFIDENT PROPERTY OF CU POWER GENERATION 	IAL - FOR MMINS OF I GROUP	R INTERPRE DIMENSION LERANCING, ME YI4 5	TATION ING AND SEE M-1994	DQDAA	, AB,AC	PGF	DIG SIZE D	A05	0L79	95			SHEET OF 5	Ding Rev D	
2	143								1				-	<u> </u>	



Cummins Confidential


Confidential and Proprietary and shall not be disclosed to others in hard copy or electronic form, reproduced by any means, or used for any purpose without written consent of Cummins Inc.

Document Generated: 01DEC2020 15:31 GMT

Part Number: A040E884 Part Revision: C Part Name: OUTLINE, ENCLOSURE Drawing Category: **Detail** State: **Released** Sheet 2 of 3

					•	
0 79_462	6 5 D Pro/ENGINEER METRIC DWG	I	4 ↓	3		Image: Note of the second se
D					NOTE I.	USE THREAD SEALANT (ITEM 8) ON ALL PIPE THREADS.
-	(4)(5)(6)(7)					
С						c
\rightarrow				•		TABULATION
в						PART NO. CURRENT ER GALLONS DESCRIPTION 0179_4621_01 FRD23155 300 PRODUCTION 0179_4621_02 FRD23155 550 PRODUCTION 0179_4621_03 FRD23155 300 KIT 0179_4621_04 FRD23155 550 KIT
	<u></u>		<u>.</u>	<u>.</u>		
-					REF REF - - 10 0179 I I - - 9 0518 - - AR AR 8 0518 6 6 6 6 7 0862	0601 A PIPE SEALANT (6ML) 0391 A SEALANT-THREAD
A					6 6 6 6 4 0526 I I I I I 3 3 0505 I I I I I 2 0505 I - I - I 0159	.3017.73 D SCREW-HHC (MI6 X 2 X 45 LG) .0399.66 D WASHER-FLAT (MI6) (18 ID X 30 OD X 3 THK) .0050 - ELBOW-BLACK STREET (1/2 X 90) .0120 - ELBOW-STREET (3/8 X 90) .1694.02 D TANK-FUEL .1694.01 D TANK-FUEL .1694.02 WH MASHER-FLAT (MATERIAL)
	6 5	1	4	3	SCALE PRINT X ± X ± Her D C ANG TOL± 1.0° 25.04.25 9.49 40.15/0.48 604.20 1.097.001 Her D C ANG TOL± 1.0° 25.04.95 9.40.47.01 20.14.16 1.007.001 Her D C DRAWN TO 25.04.95 9.01.20 20.14.16 20.14.16 1.007.001 Her D C Her Her D C Her Her D C Her Her Her Her Her Her Her Her Her Her <td>RANE 07-13-05</td>	RANE 07-13-05

											1								
REL NO	LTR	NO	REVIS										CKD		APVD		DATE		
-118385	С	1				AS 180 38.1				2					I SHORE		7JUL 7JUL		
		9				. ZONI		IC D	2								7JUL		
		10				ZONI									I SHORE		7JUL 7JUL		
			401	WAS	402	2010						IMO	טנטויי	N.N	TORUNE	. [4	TJUL		
																			_
																			D
NOTE																			
	. C) I MI	ENS	ION	S II	1].	ARE	I N		NCHE	S.							
$\sqrt{2}$	\ 5	кп	D - B	ASE	(L	IFTI	NG)	ΑN	DF	UE	L TA	ANK	HAV	Εį	A FL	AN	GE		
	Ţ	ΉI(CKN	ESS	OF.	4.7	6mm	[.	19	IN	CHES	5],							
					ES]	TS W	IIH	ΡE	AIU	IKE	COL)E L	116) {	5.1b	mm			
	A	LL(WC	EXT	RAL	ENG			HAF	DW	ARE	FOR	UN	EVE	ENES	S			
	C)F I	MOU	NTI	NG	SURF	ACE	•											_
/3	λL	I F	TIN	GВ	ASE	OR	FUEI	LT	ANK	Р	ERIM	иете	RΙ	S S	SHOW	/N .			
	F	001	NDA	TIO	N SI	HOUL	D BI	ΕE	XTE	ND	E D E	3 E Y O	ND	ΤH	IS				
	ŀ	'E R	IME	IER	. SI	EE (103	0)	APF	LI	CALI	ION	MAN	UAL	- •				
/4	I F	EA	TUR	ΕO	PTIC	ON F	2 4	- 2	DOE	S	NOT	USE	ΤH	IS	BOL	Τ.			
	_																		
																			С
																			,
																			\leftarrow
																			В
21																			
3]																			
																			Α
	I_JC					GUIL	attake			CUN	MINS	Pow	ER (GENE	RATIO	DN			
	2_MC					Gant	_												
APVD Z						C 177		I V L I (F C	jiL)und	411 Atic	ιΕ, ⁽ Ν)	GEN	ЗĔ	1					
			IRST US	ED ON		SITE											EET	DING REV	
FOR INTER OF DIMENT TOLERANC ASME YI	1NG SE 4.5N-1	E 994	DFI	E K		PG	λ	D	A	.03	5F 9	94 /				3 0	of 3	e C	
											1								

Section 4 – Generator Accessories

A048G602 10 A 50/60 Hz A051H785 20 A 50/60 Hz

Description

Cummins[®] fully automatic battery chargers are constant voltage/constant current chargers incorporating a 4-stage charging algorithm. Designed for use in applications where battery life and reliability are important; these chargers, complete with built-in equalize charge capability, are ideal for stationary or portable starting battery charging service.

To achieve optimum battery life, a 4-stage charging cycle is implemented. The four charging stages are constant current, high-rate taper charge, finishing charge, and maintaining charge. During the constant current cycle, the charger operates at maximum possible output in the fast charge mode. During the high-rate taper charge cycle the charger stays at fast charge voltage level until battery current acceptance falls to a portion of the chargers rated output. During the finishing charge cycle the charger operates at the float voltage and completes the battery charge. During the maintaining charge cycle the charger supplies only a few milliamps required by the battery to stay at peak capability.

An optional temperature sensor (A043D534) may be used to adjust charging voltage based on temperature of the battery. Use of a battery temperature sensor helps to increase battery life by preventing over or under charging. The battery temperature sensor also protects the battery from overheating. Temperature compensation sensor is required for all applications when battery charger and battery are located in different temperature or battery heater is being used.

Battery chargers are field-configurable for charging either 12 or 24 VDC battery systems at 50/60 Hz operation. Simple jumper selectors enable selection of output voltage and battery type.

Features

Protection – Surge protected to IEEE and EN standards. All models include single pole cartridge type fuses mounted on the printed circuit board to protect against input or output overcurrent.

Easy Installation – Clearly marked terminal blocks and panel knockouts provide convenient connections of input and output leads.

User Display – Output voltage and current, fault information and status are indicated on the front panel. Includes precision ammeter and voltmeter.

Monitoring – Status LED indicators are provided to show the condition of the charger. LED's on the right side of the monitor indicate operational functions for Temperature Compensation active (Green), AC on (Green), Float (Green) or Boost (Amber) mode, as well as Battery Fault (Red). LED's on the left side of the monitor illuminate (in Red) when Charger fail, High or Low VDC or AC fail occur.

Adjustable Float Voltage – Float voltage can be set, using easy to understand jumpers, for optimum battery performance and life.

Construction – NEMA-1 (IP20) corrosion resistant aluminium enclosure designed for wall mounting.

Faults – The charger senses and annunciates the following fault conditions: AC power loss, battery overvoltage, battery under voltage, battery fault conditions and charger failure. Includes an individual 30 volt/2-amp isolated contact for each alarm.

Vibration Resistant Design – complies with UL991 class B vibration resistance requirements.

Listed – C-UL listed to UL 1236 CSA standard 22.2 No 107.2-M89. Suited for flooded and AGM lead acid and NiCd batteries in generator set installations.

Warranty - 5 year CPG warranty.

Status and Fault LED

Field Selectable Jumper

Specifications

Performance and Physical Characteristics

Output:	Nominal voltage	12VDC* or 24VDC
	Float voltage – 12VDC batteries	12.87, 13.08, 13.31, 13.50*, 13.62, 14.30
	Float voltage – 24VDC batteries	25.74, 26.16, 26.62, 27.00*, 27.24, 28.60
	Equalize-voltage	6.5% above float voltage sensing
	Output voltage regulation	±0.5% (1/2%) line and load regulation
	Maximum output current	10 or 20 amps nominal
	Equalize charging	Battery interactive auto-boost
Input:	Voltage AC	120, 208, 240 ±10%
	Frequency	60/50 Hz +5%
Approximate net weight:		10A: 25 lbs. (11.36 Kg) 20A: 50 lbs. (22.68 Kg)
Approximate dimension	ons: height x width x depth-in	10A: 12.50" x 7.66" x 6.50"(318 x 195 x 165 mm) 20A: 13.06" x 13.95" x 6.83"(332 x 354 x1 73 mm)
Ambient temperature	operation: At full rated output -	- 4 °F to 104 °F (-20 °C to 40 °C)

Note:

- Battery charger comes with default settings of 12VDC and 13.50/27.00VDC float voltage and can be changed to the battery manufacture recommendations. Replacement printed circuit board and f uses are identified in the Owner's Manual (10A: A050S537 and 20A: A051X126) which resides in Quick Serve On-Line. Service parts can be purchased through the Memphis Distribution Center. The PC board replacement instruction sheet (10A: A052N073, 20A: A053W929) and service manual (A050D829) is also available.
- Installation and application must comply with "section 4.5.3 batteries and battery charger" of application guide T-030 (Liquid Cooled Generator Set Application Manual A040S369).

Caution:

- 1. Higher input voltages (i.e. 480VAC or 600VAC) can be applied if a transformer with a 120VAC-240VAC output is installed. Higher input voltages (i.e. 480VAC or 600VAC) can be applied if a transformer with a 120VAC-240VAC output is installed. For voltages higher than 240 VAC, stepdown transformer must be used. Review the respective Owner/Installation manual A050S537 for 10Amp and A051X126 20A chargers for supplier recommended stepdown transformer requirements.
- 10Amp battery charger is recommended for genset applications with 1 or 2 factory provided batteries. 20Amp battery charger is recommended for Cummins Genset applications with 3 or 4 factory provided batteries. Please consider the auxiliary DC loads connected to the genset batteries and size this charger as per the T-030 application guide to prevent misapplication issues.
- 3. Back feed to a utility system can cause electrocution and/or property damage. Do not connect generator sets to any building electrical system except through an approved device or after building main switch is open.
- 4. For professional use only. Must be installed by a qualified service technician. Improper installation presents hazards of electrical shock and improper operation, resulting in severe personal injury and/or property damage.
- 5. Use this charger for charging LEAD-ACID or LIQUID ELECTROLYTE NICKEL-CADMIUM batteries only. Do not use this battery charger for charging dry cells, alkaline, lithium, nickel-metal hydride, or sealed nickel-cadmium batteries that are commonly used with home appliances. These batteries may burst and cause injuries to persons and damage to property.
- 6. Do not parallel these battery chargers with any other charging system.

For more information contact your local Cummins distributor or visit power.cummins.com

Our energy working for you.™

©2021 Cummins Inc. All rights reserved. Cummins is a registered trademark of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins Inc. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. NAAC-5602-EN (06/21) PDA059Y464

					I									1									
rel N - 138		l tr C	NO I	REVIS		IEET	3									DWN MAH	CKD CBW		apvd I SHORE		date 90C T I	3	
																						-	
ENS	ION	S /	4 R E	F ()R	RE	FER	REN	СE	01	۷L۱	(
оис	SH	001		N (]	A	RE	I N	П	NCF	HES	6											D
	E R . 2 5													S ()R								
DTH D E	-CO ER NSU SP	COM Re	MB I T H	NA1 AT	011 	N S R E	, R AM	REF 1PA	E R C I	T (T Y I) / . E	A P F B E M	۲l	CAE	3 L E	EC.							
IN CON	TR CO TIN NOM	N J U O U	JNC JS	TIC APF)N)li	W I E D	ΤH	ΑU	XII	LD	٩R١	((CON	TA(CTS	ΤO							_
N F	OR	NOF	RMA	L (6 E N	ER.	ATC)R	SE	ΤN	401	/EN	4E N	Τ [)UR	T A L I NG A NC							
L0		101	V 0	F 1	ΓHΕ	EI	LEC	CTR	IC	۹L	S1	ΓUE				(FO AS			ION))			
2]		R	I S E	RE	B E A) A Th							С
	ION OX								ΑT	101	۷S	ΑF	۶E	THE	E S	AME	FO	R					
400 /	GRO MC 6"- WRE	M-€ 6	6 A UN	WG		OUI	NDI	NG	EI	LEC	CTF	80[)E	LUC	βI	SМ	ECH	AN	ICAL	T	YPE,		
M - I	D T AW 27	G	- 3	75		-LI	ЗS																←
#2- 5/I	G I 600 6"- REN	M(6	СМ			AL	ΤY	ΡE	,														
NDE CM-	D T 4 A	OR(WG	-	500					_														
	9.8 S P												R.										В
US	STE ING 200		C0	PPE												BLE ACI	ΤY						
	E A K L A B			GS	-	REI	FER	₹ T	0	REC	00	4ME	ND	E D									
ΤA		3	12.	6 (E	})	US	ING	55	00	M	СМ	CA	٩Bl	ES	(2	S C WI			ATED Er				_
10.	CON 16 BIE	US	ING	CC)PP	ER	CA	۱BL								со	NA						
ΤA	RE BLE ME	3	12.	6(A	()	US	ING	6 [3/1	0 - 0	4]] (CAB	LES	5 (CA I W	LCU IRE	LA ⁻ Pe	F E D E R				
																							A
	• * D	0	ANE																				
T c	KD H	_ T R	100	IG				Gu	autor	ין ני קרנ	~	17							RATIO		K L L	$\frac{1}{2}$	
D	pvd H ate 2	7 M A	YII					SIT	E CO	DE				NE	,ι	ιK	. U		BRI				
	R INTER DIMENS LERANCI ME YIA	PRETAT IONING NG, SE I. 5N - I	10N AND E 994	DQD	SED ON AA, I	AB,	AC	P	GF		DNG S I ZI D		A 0		J8!	94				SHEI OF		Ŷ	
					1									1									

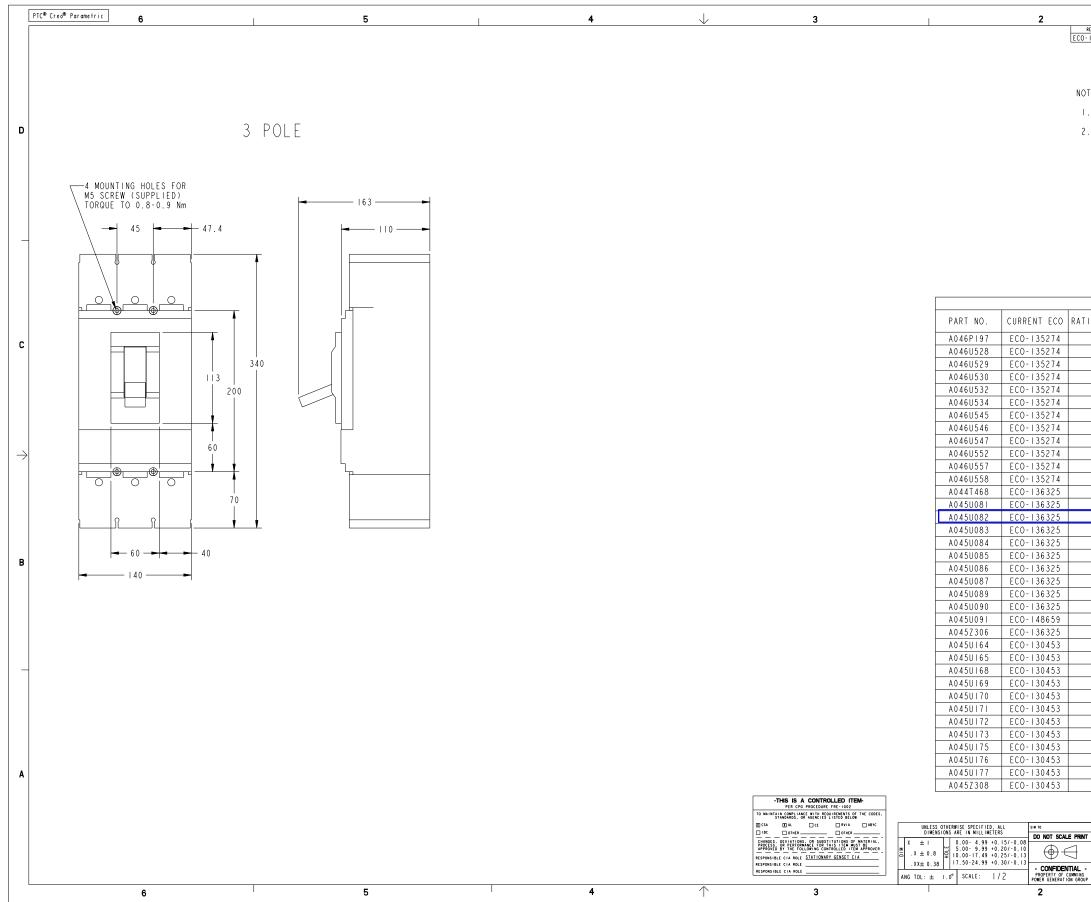
Creo Par	rametric 6	5	4	\downarrow	3	2

D

С


В

Α


		UL/IEC LUG	GS			ACCESSORY SPECIFICATION	IS	
LUG	FRAME	MAX AMPS	WIRE RANGE COPPER	DIM_B	ACCESSORY DESCRIPTION	CONTACT RATING	INRUSH CURRENT	CONNECTION TYPE
0		400A 3 POLE	#2-600 KCMIL		24 VDC SHUNT TRIP	-	10A/5	COMPRESSION TERMINALS
0	-NSJ /NLG	600A 3-POLE	2/0-350 KCMIL	565 [22.2]	I EA. FORM C I AUX CONTACT + I TRIP ALARM	6A AT 690 VAC 2.5A AT 48 VDC, 0.3A AT 250 VDC	-	#20-16 AWG OR SMALLER TORQUE: I.I3 Nm [10 LB-IN]
	Р	800A 3-POLE		18.9	24 VDC SHUNT TRIP	-	200VA	COMPRESSION TERMINALS FOR 1 OR 2 #18-16 AWG.
	F	OUUA S-PULE	3/0-500 KCMIL	[480]	I EA. FORM C 4 AUX CONTACTS + I TRIP ALARM	6A AT 240 VAC, 6A AT 480 VAC, 3A AT 600 VAC, 2.5A AT 48 VDC, 0.8A AT 125 VDC, 0.3A AT 250 VDC	-	TORQUE: I.I3 Nm [IO_LB-IN]
	Р			17.2	24 VDC SHUNT TRIP	-	200VA	COMPRESSION TERMINALS FOR I OR 2 #18-16 AWG.
	۲ ۲	1200A 3-POLE	3/0-500 KCMIL	[437]	I EA. FORM C 4 AUX CONTACTS + I TRIP ALARM	6A AT 240 VAC, 6A AT 480 VAC, 3A AT 600 VAC, 2.5A AT 48 VDC, 0.8A AT 125 VDC, 0.3A AT 250 VAC	-	TORQUE: I.I3 Nm [IO_LB-IN]

∧ 75C TEMPUE	RATURE R	ATED CONDUCTOR A	T 40C AM	008, ARTICLE 310.15 AT MBIENT AND ANNEX C
		GHT FLEXIBLE MET	AL CONDU	CONDUIT
BRKR	WII	(COFFER)		CONDUTT
AMPS	QTY	SIZE	QTY	SIZE
1200	4	500 KCMIL	4	4 "
800	3	350 KCMIL	3	3 1/2"
600	2	350 KCMIL	2	3 1/2"
500	2	300 KCMIL	2	3 1/2"
450	2	300 KCMIL	2	3 1/2"
400	I	600 KCMIL	I	4 "
350	I.	600 KCMIL	I	4 "
300	1	500 KCMIL	1	4 "

	DIM_A TABULATION								
MODEL NAME	TANK/LIFT BASE FEATURE CODE	TANK CAPACITY (GAL)	HEIGHT DIM_A						
	C201	300	707[27.83]						
	C202	400	758[29.83]						
DODAA, DODAB DODAC	C203	500	808[31.83]						
	C 2 0 4	600	885[34.83]						
	C205	660	923[36.33]						
	C206	720	961[37.83]						
	C208	1470	3 6[5 .83]						
	C242	270	758[29.83]						
	F214	NA	605[23.83]						

					I			1					
	RE ECO-I	L NO 38423	l TR C	NO I	REVISION UPDATE DIM	A TABULATI	ON		DWN Mah	CKD CBW	APVD K.KISHORE	DATE 090CTI3]
[
													D
													с
													k
													$\left \right\rangle$
													в
													_
													A
0_31 SCALE	744 Print	DWN [)_CR	ANE		anguitae	С	ummins F	,OME	RG	ENERATION	1	1
) -(-	1	APVD	_ T R _ T R	100	IG	er S		INE,C					1
	IAL -	DATE 2	27 M A	YLI		SITE CODE							
RATIO	TAL - MMINS N GROUP	TOLERANC ASME YI	1NG, SE 4.5M-1	E 994	FIRST USED ON DQDAA, AB, AC	PGF	DING D A C)40J89	4			SHEET DING REV 3 OF 3 C	J
								1					

					1		
	LNO LTR NO				DWIN CKD		
- 1	48659 D	A045U09	91 – UPDATE MEP (SEE ECO	WGM D JI	R K.KISHORE OIJANI	5
)T	ES:						
	THIS PAG	1 2 I T S	MANIIFACTIIREI	3 5011	RCE CONTROLLE	D	
•	INIS FAI	11 13 1	MANUFACIUNE	1 3001	NUE CONTROLLE	υ.	
2.	PART SPE						D
			NIC TRIP	, ,, ,	INIT		
	IKIN I	JNII: 1	MICROLOGIC	5.33 I	П		
			ED ON ALL PO				
			I CABLE 2			CMUL CU	
	401-6.	SVA: I	IO Z CABLES	5 2/0	AWG TO 350 K	UMIL UU	
	EACH (CB INCL	LUDES MOUNT	ING H	ARDWARE :		
		M5 X	85 SCREWS,	NUTS	& LOCKWASHER	S	
	AGENC	IES 3	-POLE: UL L	LSTED			
	NOLNO	120. 0	IEC	IVILU			
		4	-POLE: IEC (ONL Y			
			TLON				4
		TABULA	I I ON			1	_
1	NG (AMP)	POLE	VOLTS (UL/	IEC)	DESCRIPTION	NOTES	
							_
	600	3	600/69		LEFT HAND		- c
	500	3	600/69	-	LEFT HAND		_
	450	3	600/69		LEFT HAND		-
	400	3	600/69		LEFT HAND		4
	350	3	600/69		LEFT HAND		-
	300	3	600/69		LEFT HAND		
	630	4	690 (IEC O		LEFT HAND		_
	500	4	690 (IEC O		LEFT HAND		
	400	4	690 (IEC O		LEFT HAND		
	320	4	690 (IEC O		LEFT HAND		⊣∈
	250	3	600/69)	LEFT HAND		
	150	3	600/69)	LEFT HAND		
	600	3	600/69)	RIGHT HAND	SEE NOTE I	
	500	3	600/69)	RIGHT HAND	SEE NOTE I	
	450	3	600/69)	RIGHT HAND	SEE NOTE I	
	400	3	600/69)	RIGHT HAND	SEE NOTE I	
	350	3	600/69)	RIGHT HAND	SEE NOTE I	
_	300	3	600/69)	RIGHT HAND	SEE NOTE I	∎
	630	4	690 (IEC O	NLY)	RIGHT HAND	SEE NOTE I	_ `
	500	4	690 (IEC O	NLY)	RIGHT HAND	SEE NOTE I	
	400	4	690 (IEC O	NLY)	RIGHT HAND	SEE NOTE I	
	320	4	690 (IEC O	NLY)	RIGHT HAND	SEE NOTE I	
_	250	3	600/69)	RIGHT HAND	SEE NOTE I	
	150	3	600/69)	RIGHT HAND	SEE NOTE I	
	600	3	600/69)	ACCESSORIES		
_	500	3	600/69)	ACCESSORIES]
	450	3	600/69	0	ACCESSORIES]-
	400	3	600/69)	ACCESSORIES		
	350	3	600/69)	ACCESSORIES		
	300	3	600/69)	ACCESSORIES		
	630	4	690 (IEC O	NLY)	ACCESSORIES		1
	500	4	690 (IEC O		ACCESSORIES		
	400	4	690 (IEC O		ACCESSORIES		1
	320	4	690 (IEC O		ACCESSORIES		
	250	3	600/69		ACCESSORIES	1	
	150	3	600/69		ACCESSORIES	1	٦.,
		· ·	1			1	1
	DWN S. CAI	VFIELD	angutae		CUMMINS POWER	GENERATION	
т				врг	AKER,CIRCU	ιT	
T	APVD V GIII		1	IDKE.	ANER (K(1.1	
Т	APVD V. GUI DATE 29NOV	12	SITE CODE		nnen, ornoo		
ιτ -		12	SITE CODE	DING	A044T469	SHEET DON RE JOFJ	ç V

Product data sheet

Specifications

Circuit breaker, PowerPact L, unit mount, Micrologic 3.3S, 600A, 3 pole, 18kA, 600VAC,

LGL36600U33X

Main	
Range	PowerPact
Product name	PowerPact L
Device short name	L-Frame
Product or Component Type	Circuit breaker
Device application	Distribution
Complementary	
Line Rated Current	600 A
Number of Poles	3P
Control type	Toggle
Breaking capacity code	G
Breaking capacity	65 kA 240 V AC 50/60 Hz UL 489 35 kA 480 V AC 50/60 Hz UL 489 18 kA 600 V AC 50/60 Hz UL 489 20 kA 250 V DC UL 489 20 kA 500 V DC UL 489
[Ue] rated operational voltage	600 V AC 50/60 Hz IEC 60947-3
Network Frequency	50/60 Hz
[Ics] rated service breaking capacity	65 kA 220/240 V AC 50/60 Hz IEC 60947-2 35 kA 380/440/415 V AC 50/60 Hz IEC 60947-2 18 kA 500/525 V AC 50/60 Hz IEC 60947-2 20 kA 250 V DC IEC 60947-2 20 kA 500 V DC IEC 60947-2
[Uimp] rated impulse withstand voltage	8 kV IEC 60947-2
Trip unit technology	Electronic, standard, Micrologic 3.3 S, LSI
[Ui] rated insulation voltage	750 V IEC 60947-2
Trip unit name	Micrologic 3.3 S
Protection technology	Current limiter
Suitability for isolation	Yes IEC 60947-2
Utilisation category	Category A
	see CB outline drawing and termination details

Ready 1 LED green) Alarm 1 LED 90 % Ir orange) Alarm LED 105 % Ir red) Switched off (OFF) 1 trip indicator green)
Unit mount lug)
Lug
Lugs line Lugs load
Please see CB outline drawing for lug and termination details
0.251 x ln
442.54 lbf.in (50 N.m) 0.110.37 in² (70240 mm²) (AWG 2/0500 kcmil)
2 auxiliary switch OF plug-in) 1 alarm switch SD plug-in) 1 overcurrent trip switch SDE plug-in) 1 voltage release MN or MX plug-in)
1.22 in (31 mm) 2.40 in (61 mm)
Black
13.39 in (340 mm)
5.51 in (140 mm)
4.33 in (110 mm)
13.67 lb(US) (6.2 kg)
Modbus Ethernet

Environment

Standards	UL CSA NEMA NOM-003-SCFI-2000 IEC 60947-2			
Product certifications	UL CSA NOM			
IP degree of protection	Front cover IP40			
Pollution degree	3 IEC 60947-1			
Ambient Air Temperature for Operation	28158 °F (-270 °C)			
Ambient Air Temperature for Storage	-58185 °F (-5085 °C)			
Operating altitude	< 6561.68 ft (2000 m) without derating 5000 m with derating			

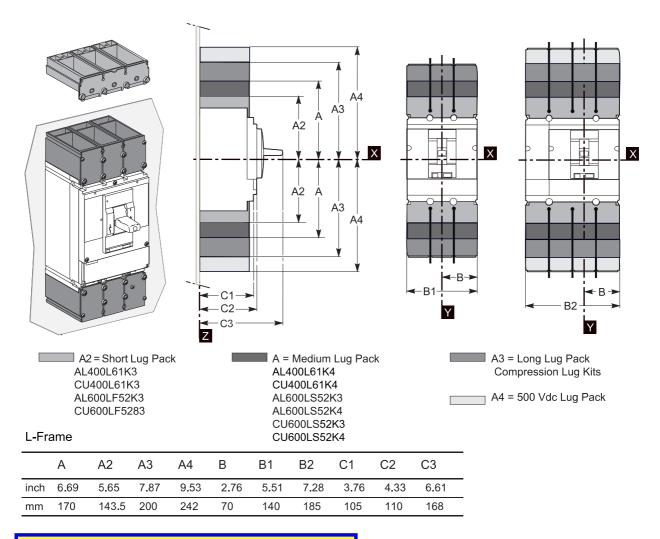
Ordering and shipping details

Category	01116-L ELEC TRIP UNIT MOUNT BREAKER/SW			
Discount Schedule	DE2			
GTIN	785901638674			
Nbr. of units in pkg.	1			
Package weight(Lbs)	15.00 lb(US) (6.804 kg)			
Returnability	Yes			
Country of origin	US			

Packing Units

Unit Type of Package 1	PCE
Package 1 Height	8.75 in (22.225 cm)
Package 1 width	10.75 in (27.305 cm)
Package 1 Length	19.50 in (49.53 cm)

Offer Sustainability

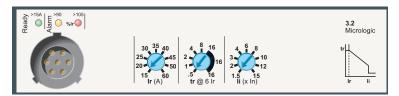

Sustainable offer status	Green Premium product
California proposition 65	WARNING: This product can expose you to chemicals including: DINP, which is known to the State of California to cause cancer, and DIDP, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov
REACh Regulation	REACh Declaration
EU RoHS Directive	Compliant EU RoHS Declaration
Mercury free	Yes
RoHS exemption information	Yes
China RoHS Regulation	China RoHS declaration Product out of China RoHS scope. Substance declaration for your information.
Environmental Disclosure	Product Environmental Profile
Circularity Profile	End of Life Information
PVC free	Yes

Product data sheet

LGL36600U33X

Technical Illustration

Dimensions



Please see CB outline drawing for lug and termination details

PowerPact[™] H-, J-, and L-Frame Circuit Breakers Trip Units

Micrologic™ 3 Trip Units

Micrologic 3 trip units can be used on PowerPact H-, J-, and L-Frame circuit breakers with performance levels D/G/J/L.

They provide:

- standard protection of distribution cables
- indication of:
 - overloads (using LEDs)
 - overload tripping (using the SDx relay module).

Circuit breakers equipped with Micrologic 3 trip units can be used to protect distribution systems supplied by transformers.

Protection

Settings are made using the adjustment rotary switches.

Overloads: Long time protection (Ir)

Inverse time protection against overloads with an adjustable current pick-up Ir set using a rotary switch and an adjustable time delay t_r .

Neutral protection

- On 3-pole L-frame circuit breakers, neutral protection is not possible.
 - On four-pole L-frame circuit breakers, neutral protection may be set using a three-position switch: — switch position 4P 3D: neutral unprotected
 - switch position 4P 3D + N/2: neutral protection at half the value of the phase pick-up, (0.5 x lr)
 - switch position 4P 4D: neutral fully protected at Ir

Indicators

Front indicators

- The green "Ready" LED blinks slowly when the electronic trip unit is ready to provide protection. It indicates the trip unit is operating correctly.
- Orange overload pre-alarm LED: steady on when I > 90% I_r
- Red overload LED: steady on when I > 105% I_r

Remote indicators

An overload trip signal can be remotely checked by installing an SDx relay module inside the circuit breaker. This module receives the signal from the Micrologic electronic trip unit through an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is reclosed. See page 94.

58

>90

🔵 %lr 🥘

SDX Module

Alarm

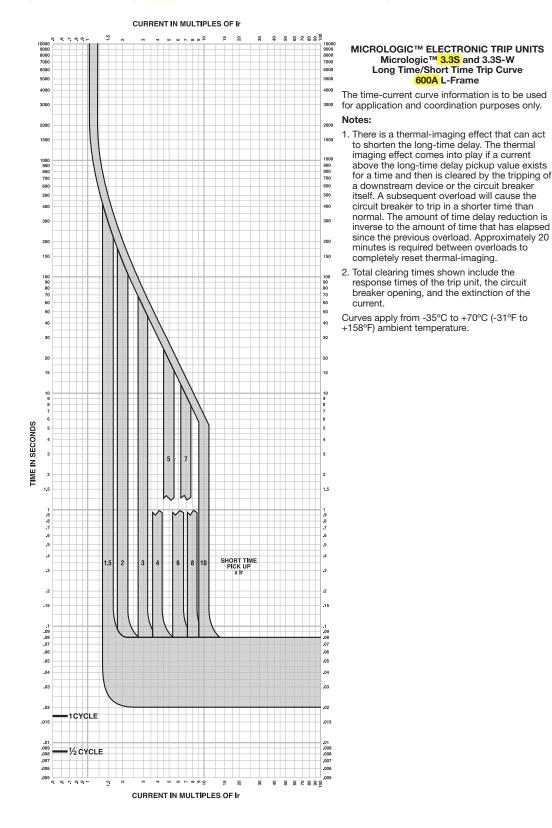
Front Indicators

>105

SQUARE D

Ratings	I _n at 104°F (40°C) ¹		60 A	100 A	150 A	250 A	400 A	600 A	•		
	H-frame		Х	Х	Х						
Circuit Breaker	J-frame					Х					
	L-frame					Х	Х	×			
Micrologic 3.2 / 3	3.3 trip units										
L Long-time protec	tion										
	l _r		Value	dependi	ng on s	ensor ra	ting (I _n)	and s	etting o	n rotary	/ switc
	I _n =60 A	I _r =	15	20	25	30	35	40	45	50	60
Pick-Up (A)	I _n = 100 A	I _r =	35	40	45	50	60	70	80	90	100
Tripping between	I _n = 150 A	I _r =	50	60	70	80	90	100	110	125	150
1.05 and 1.20 Ir	I _n = 250 A	I _r =	70	80	100	125	150	175	200	225	250
	I _n = 400 A	I _r =	125	150	175	200	225	250	300	350	400
	I _n = 600 A	I _r =	200	225	250	300	350	400	450	500	600
	t _r		0.5	1	2	4	8	16			
Time Delay (s)		1.5 x l _r	15	25	50	100	200	400			
Accuracy 0 to -20%		6 x I _r	0.5	1	2	4	8	16			
		7.2 x I _r	0.35	0.7	1.4	2.8	5.5	11			
Thermal memory			20 min	utes befo	ore and a	after tripp	bing				
I Instantaneous									-		
		60 A	1.5	2	3	4	6	8	10	12	15
		100 A	1.5	2	3	4	6	8	10	12	15
	l _i x	150 A	1.5	2	3	4	6	8	10	12	15
Pick-up (A)	17	250 A	1.5	2	3	4	5	6	8	10	12
accuracy ± 15%		400 A	1.5	2	3	4	5	6	8	10	12
		600 A	1.5	2	3	4	5	6	8	10	11
	Non-tripping time Maximum break time	10 ms 50 ms for l > 1.5 li									
Micrologic 3.2S /	3.3S trip units										
L Long-time protec	tion										
	I _r	•	_	dependi	-			and s			
	I _n =60 A	I _r =	15	20	25	30	35	40	45	50	60
	1	1.	0.5	1	1	1	0.0			1	1

Table 50:	Micrologic™	3 Trip Unit
-----------	-------------	-------------


L Long-time protec	1.										
	I _r		-				rating (Ir	,, ,			
	I _n =60 A	I _r =	15	20	25	30	35	40	45	50	60
Pick-Up (A)	I _n = 100 A	I _r =	35	40	45	50	60	70	80	90	100
Tripping between	I _n = 150 A	I _r =	50	60	70	80	90	100	110	125	150
1.05 and 1.20 Ir	I _n = 250 A	I _r =	70	80	100	125	150	175	200	225	250
	I _n = 400 A	I _r =	125	150	175	200	225	250	300	350	400
	I _n = 600 A	I _r =	200	225	250	300	350	400	450	500	600
	t _r		non-a	djustable	;						
Time Delay (s)		1.5 x l _r	400								
Accuracy 0 to -20%	6 x I _r 16										
		7.2 x I _r	11								
Thermal memory	·	•	20 minutes before and after tripping								
S Short-time protect	tion										
Pick-up (A) accuracy ± 10%	I _{sd} - I _r x		1.5	2	3	4	5	6	7	8	10
	t _{sd}	t _{sd}		non-adjustable							
Time delay (ms)	Non-tripping time Maximum break time										
l Instantaneous											
Pick-up (A)	l _i x l _n		1.5	2	3	4	6	8	10	12	15
accuracy ± 15%	Non-tripping time Maximum break time		10 ms 50 ms	for I > 1	.5 li						·

I If the trip units are used in high-temperature environments, the Micrologic trip unit setting must take into account the thermal limitations of the circuit breaker. See the temperature derating information on page 126.

59

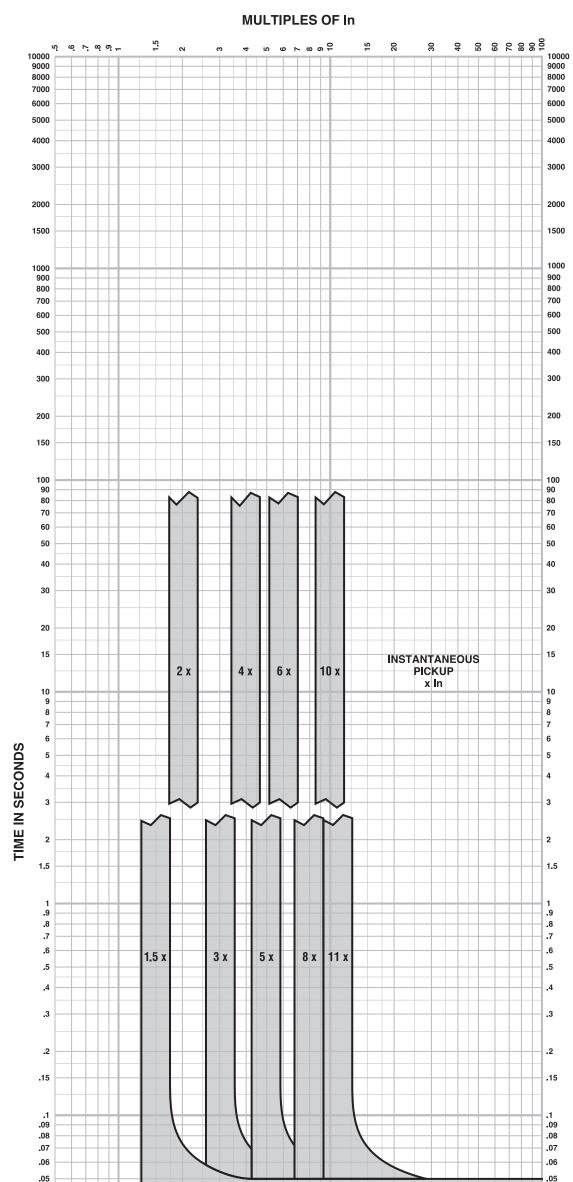

PowerPact H-, J-, and L-Frame Circuit Breakers Trip Curves

Figure 125: Micrologic 3.3S and 3.3S-W Electronic Trip Unit Long Time/Short Time Trip Curve

248

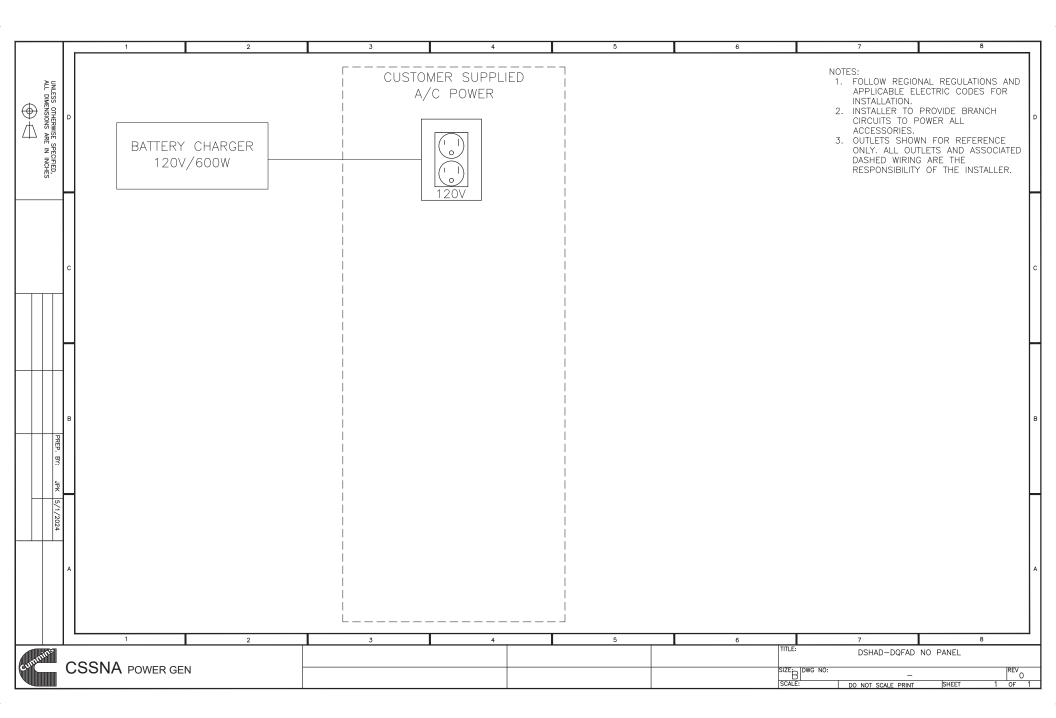

MICROLOGIC[™] ELECTRONIC TRIP UNITS Micrologic[™] 3.3/3.3S/5.3A or E/6.3A or E Instantaneous Trip Curve 600A L-Frame

The time-current curve information is to be used for application and coordination purposes only.

Notes:

- There is a thermal-imaging effect that can act to shorten the long-time delay. The thermal imaging effect comes into play if a current above the long-time delay pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in a shorter time than normal. The amount of time delay reduction is inverse to the amount of time that has elapsed since the previous overload. Approximately 20 minutes is required between overloads to completely reset thermal-imaging.
- 2. Total clearing times shown include the response times of the trip unit, the circuit breaker opening, and the extinction of the current.
- 3. In = Maximum dial setting of Ir. 600A L-Frame: In = 600A = Max Ir setting

Curves apply from -35°C to +70°C (-31°F to +158°F) ambient temperature.


MULTIPLES OF In

© 2011 Schneider Electric all rights reserved

Drawing No. S1A8147600 March 2011

	1	2	3	4	5	6	7	8
UNLESS OTHERWISE SPECIFIED, ALL DIMENSIONS ARE IN INCHES	D	CTB PCC NET A (+) CTB2-2 PCC NET 8 (-) CTB3-2 GROUND B-(SHELL CTB3-2 CTB18-2 RAWDT E-STOP R CTB18-2 CTB18-2 RAWDT E-STOP R CTB18-4 CTB18-2 READT E-STOP R CTB1-4 CTB12-4 POWER B- CTB12-4	POWERCOMMAND CONTROL PCC2.3) TURN PUT					C
FRACTIONAL: 	c	CTB11-4 POWER 8- CTB12-4 POWER 8- CTB22-3 LOAD DUMP Reference CTB12-2 READTS STATE TREE CTB13-2 READTS STATE TREE MODBUS RTU TB15-1 TB15-3 R5485 (+) TB15-4 R5485 (-)	JRN					c
REFERENCES A065N785 A052P382 A054A430	_							-
	в							E
PREP. BY: KDU 08, CHKD BY: MODIFIED BY: FINISH: N/A	_							-
/26/24 ENGINE FAMILY: PCC2300 GENERIC ATS	A					TO BE DONE PCC NET CAE (24 AWG, ST MODBUS RS4 (22 AWG, ST TOTAL NETWO	NNECT WIRING AND DA' WITH STRANDED WIRE BLE: BELDEN 9729. RANDED, SHIELDED, TW 85 CABLE: BELDEN 31 RANDED, SHIELDED, TW RK LENGTH NOT TO E IED WIRING IS SHOWN	PER NFPA 37. ISTED PAIR) 06A. ISTED PAIR) XCEED 4000 FT.
cummins			3 SITE NAME: CONTRACTOR NAME:	CONTACT NO:	-	6 DMER PROJECT NO: - A PROJECT NO: SCAL	7 PCC2.3 CONTROL QSL9QSX15 DWG NO: PCC2.3 INTER E: NONE DO NOT SCALE PRINT	5QSK23 RCONNECT REV_

Section 5 – Startup & Warranty

Cummins Sales and Service Customer / Contractor Pre Commissioning Inspection Form

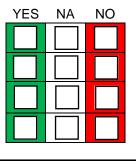
The intent of this form is for the contractor to prepare for equipment to be commissioned by a certified Cummins Field Service Power Generation Technician. Filling out this form is required and will minimize delays due to equipment failing to meet requirements. Completing this checklist in its entirety should minimize the need for additional billing beyond the previously provided commissioning quote.

The items listed are the responsibility of the contractor and not Cummins Sales and Service.

Project Name/End User:	
Contractor:	
Address: Contact	:
Business Phone: Cell Phon	e:
Email:	
ON SITE INFORMATION	
On-Site Contact Information:	
Address:	
Time Requested Onsite:	
Sub location of Generator (ie. Roof, basement. Does the facility have the following: Loading D Access (from truck and load bank parking to generate the following of the following bank parking to generate the followin	Dock Elevator
Parking: Is parking available on-site for service	
Permits: Have all necessary air quality and loca Fuel Tank Testing: Is fuel tank testing required:	
If yes when is the inspector scheduled for	

ON SITE INFORMATION CONTINUED

YES NA NO


Is the facility occupied and is customer aware there will be power outages after generator is started?

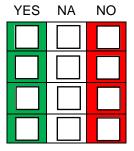
Will there be any site safety training needed for technician prior to beginning? On site contact for training: _____

Will customer representative be on site for operator training?

On site contact for operator training: _

MECHANICAL LOCATION AND PLACEMENT OF THE GENERATOR SET

Generator is properly secured to pad or vibration isolators


Generator Enclosure and/or Room is free of all debris

No airflow obstructions to the engine or generator are present for cooling combustion

(See Cummins T-030 or Installation manual of generator set)

Room is designed for adequate inlet and outlet airflow

GASEOUS FUEL Natural Gas/LP Vapor/LP Liquid

Natural gas and/or LPG fuel supply is connected.

Fuel piping is the appropriate size based on full-load CFH/BTU requirement. Pipe size after service regulator: ______ Service regulator(s), (if supplied), fuel strainer(s), flexible fuel line(s) and manual shut off are installed

Fuel pressure after service regulator is: ______inches of H2O

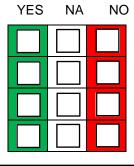
I have read and fully understand the fuel requirements for this equipment, I am verifying that the piping and fuel supply meets or exceeds those requirements. I also understand failure to meet the requirements will result in additional charges.

Contractor "requestor" Signature

Date

DIESEL FUELED GENERATORS

YES	NA	NO

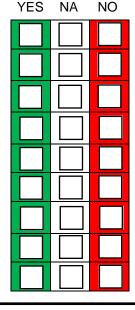

Flexible fuel connections, (supply and return) are connected to generator and piping.

Day tank installed, wired and plumbed (lines free of obstruction) to genset and main fuel tank if applicable. Only black iron pipe for fuel lines, never use copper or galvanized pipe.

All tanks filled with enough fuel to perform startup and testing.

A return line from engine to day tank and day tank to main tank should be in place

EXHAUST SYSTEM


Exhaust wrapped or isolated to prevent accidental activation of fire protection devices and sprinklers.

Exhaust flex-pipe is installed at engine exhaust outlet (The silencer and flex-pipe are supplied with the generator set).

Silencer is installed with appropriate supports (no weight should be placed on the exhaust outlet of the genset).

Exhaust system has proper expansion joints and wall thimbles (Thimbles are required for wall or roof penetration).

GENERATOR ELECTRICAL CONNECTIONS

Load conductors connected to breakers

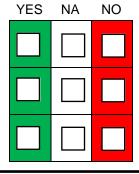
Flexible connections used on all conduit connections to the generator set output box

Remote start interconnection **<u>stranded</u>** wiring is installed between the generator set and the automatic transfer switch(s) and annunciator.

AC Power conductors in dedicated conduit separate from any DC control or network wiring

Ground fault connected/functioning on generator, if supplied

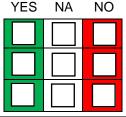
AC power wired to the coolant heaters (Do NOT energize)


Check for AC oil pan heater, control heater or generator winding heater (Needing AC wiring)

Generator is grounded in compliance with local codes

If applicable, louver motors are operational and connected to generator controls

GENERATOR ELECTRICAL CONNECTIONS CONTINUED


Annunciator mounted in a location where someone can observe a fault of the remote generator system

Where is annunciator located? _____

Are there additional ancillary devices/equipment that need to be integrated into the system? If yes, please define_____

Battery charger mounted (free of vibration, weather, accessible for an operator to observe easily) and connected to the appropriate AC and DC wiring to operate the charger.

TRANSFER SWITCH ELECTRICAL CONNECTIONS

Conductors connected for Utility, Load and Emergency

Remote start interconnection **<u>stranded</u>** wiring is installed between the generator set and the automatic transfer switch(s).

Four Pole Transfer Switch: Is generator neutral grounded?

DAY OF STARTUP

YES	NA	NO

Training of facility personnel will be done on the same day as start up. Additional trips for operational training will be an additional charge. Can transfer switch be tested at time of generator startup? (There will be a power interruption) **Note:** *After hours testing could result in additional charges.* If the associated switchgear and/or ATS(s) are not provided by Cummins, will the manufacturer's representative be on site?

Exercise with or without load?

If known, Transfer Time delay set recommendations Generator Set to exercise Day:_____

Contractor "requestor" Signature

Printed Name

Date: _____

Please complete this form and return to schedule start up, if not returned within 5 business days prior to scheduled startup it may be delayed. I understand that the start-up date may have to be rescheduled at my expense if the above items have not been completed properly.

Time:

Warranty Statement

Global Commercial Warranty Statement

Generator Set

Limited Warranty

Commercial Generating Set

This limited warranty applies to all Cummins Power Generation® branded commercial generating sets and associated accessories (hereinafter referred to as "Product").

This warranty covers any failures of the Product, under normal use and service, which result from a defect in material or factory workmanship.

Warranty Period:

The warranty start date[†] is the date of initial start up, first rental, demonstration or 18 months after factory ship date, whichever is sooner. See table for details.

Continuous Power (COP) is defined as being the maximum power which the generating set is capable of delivering continuously whilst supplying a constant electrical load when operated for an unlimited number of hours per year. No overload capability is available for this rating.

Prime Power (PRP) is defined as being the maximum power which a generating set is capable of delivering continuously whilst supplying a variable electrical load when operated for an unlimited number of hours per year. The permissible average power output over 24 hours of operation shall not exceed 70% of the PRP. For applications requiring permissible average output higher than stated, a COP rating should be used.

Limited-Time Running Power (LTP) is defined as the maximum power available, under the agreed operating conditions, for which the generating set is capable of delivering for up to 500 hours of operation per year.

Emergency Standby Power (ESP) is defined as the maximum power available during a variable electrical power sequence, under the stated operating conditions, for which a generating set is capable of delivering in the event of a utility power outage or under test conditions for up to 500 hours of operation per year. The permissible average power output over 24 hours of operation shall not exceed 70% of the ESP.

Environmental Protection Agency – Stationary Emergency (EPA-SE) is defined as being the maximum power available during a variable electrical power sequence, under the stated operating conditions, for which a generator set is capable of delivering in the event of a utility power outage or under test conditions and used in strict accordance with the EPA NSPS for stationary engines, 40 CFR part 60, subparts IIII and JJJJ, where a reliable utility must be present. The permissible average power output over 24 hours of operation shall not exceed 70% of the EPA-SE.

Data Center Continuous (DCC) is defined as the maximum power which the generator is capable of delivering continuously to a constant or varying electrical load for unlimited hours in a data center application.

	(whichever occurs first)			
	Rating	Months	Max. Hours	
	COP	12	Unlimited	
	PRP	12	Unlimited	
	LTP	12	500 hrs	
_	ESP	24	1000 hrs	
	EPA-SE	24	Unlimited	
	DCC	24	Unlimited	

Base Warranty Coverage Duration (Whichever occurs first)

[†] Warranty start date for designated rental and oil and gas model Products is determined to be date of receipt of Product by the end customer.

Cummins Power Generation® Responsibilities:

In the event of a failure of the Product during the warranty period due to defects in material or workmanship, Cummins Power Generation® will only be responsible for the following costs:

- All parts and labor required to repair the Product.
- Reasonable travel expenses to and from the Product site location.
- Maintenance items that are contaminated or damaged by a warrantable failure.

Owner Responsibilities:

The owner will be responsible for the following:

- Notifying Cummins Power Generation® distributor or dealer within 30 days of the discovery of failure.
- Installing, operating, commissioning and maintaining the Product in accordance with Cummins Power Generation®'s published policies and guidelines.
- Providing evidence for date of commissioning.
- Providing sufficient access to and reasonable ability to remove the Product from the installation in the event of a warrantable failure.
- Incremental costs and expenses associated with Product removal and reinstallation resulting from non-standard installations.
- Costs associated with rental of generating sets used to replace the Product being repaired.
- Costs associated with labor overtime and premium shipping requested by the owner.
- All downtime expenses, fines, all applicable taxes, and other losses resulting from a warrantable failure.

Limitations:

This limited warranty does not cover Product failures resulting from:

- Inappropriate use relative to designated power rating.
- Inappropriate use relative to application guidelines.
- Inappropriate use of an EPA-SE application generator set relative to EPA's standards.
- Normal wear and tear.
- Improper and/or unauthorized installation.
- Negligence, accidents or misuse.
- Lack of maintenance or unauthorized repair.
- Noncompliance with any Cummins Power Generation® published guideline or policy.
- Use of improper or contaminated fuels, coolants or lubricants.
- Improper storage before and after commissioning.
- Owner's delay in making Product available after notification of potential Product problem.
- Replacement parts and accessories not authorized by Cummins Power Generation®.
- Use of Battle Short Mode.
- Owner or operator abuse or neglect such as: operation without adequate coolant or lubricants; overfueling; overspeeding; lack of maintenance to lubricating, cooling or air intake systems; late servicing and maintenance; improper storage, starting, warm-up, run-in or shutdown practices, or for progressive damage resulting from a defective shutdown or warning device.

 Damage to parts, fixtures, housings, attachments and accessory items that are not part of the generating set.

This limited warranty does not cover costs resulting from:

- Difficulty in gaining access to the Product.
- Damage to customer property.

A "Data center" is defined as a dedicated facility that house computers and associated equipment for data storage and data handling.

Reliable utility is defined as utility power without routine or regularly scheduled black-outs.

Please contact your local Cummins Power Generation® Distributor for clarification concerning these limitations.

CUMMINS POWER GENERATION® RIGHT TO FAILED COMPONENTS:

Failed components claimed under warranty remain the property of Cummins Power Generation®. Cummins Power Generation® has the right to reclaim any failed component that has been replaced under warranty.

Extended Warranty:

Cummins Power Generation® offers several levels of Extended Warranty Coverage. Please contact your local Cummins Power Generation ® Distributor for details.

www.power.cummins.com

THE WARRANTIES SET FORTH HEREIN ARE THE SOLE WARRANTIES MADE BY CUMMINS POWER GENERATION ® IN REGARD TO THE PRODUCT. CUMMINS POWER GENERATION® MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, OR OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT IS CUMMINS POWER GENERATION® LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES.

This limited warranty shall be enforced to the maximum extent permitted by applicable law. This limited warranty gives the owner specific rights that may vary from state to state or from jurisdiction to jurisdiction.

Product Model Number:	
Product Serial Number:	
Date in Service:	