

Prepared for:

Central States Diesel Generators 2001 S Prairie Ave. Waukesha, WI 53189

Cummins Project Manager:

Blake Sarmiento blake.sarmiento@cummins.com 502-991-1019

PLEASE COMPLETE THIS SECTION OR PROVIDE SIGNOFF TO PROCEED

Revise	with	corrections	provided

Date:

Approved and released for production

Rev_

By (name and company):

Requested delivery date:

Requested delivery address:

Contact person and phone # for deliveries:

Salesforce O# Opp # 423338 BMS # BMS P423403 Customer PO# PO signed quot

Serving Cummins Customers

Cummins power solutions are supported by the largest and best-trained worldwidecertified sales/distributor network in the industry. This network will help you select and install the critical power solution to meet the requirements of your specific application. This same network provides experts with advanced technology to make your life easier while providing a seamless support experience.

IMPORTANT: The critical power solution information and specifications included in this pdf can be used by the site contractor(s) and/or engineer(s) to assist with planning for and accomplishing the overall power solution installation. Please forward this document to the appropriate personnel, as necessary.

It is the obligation of the electrical contractor and reviewing engineer to determine that the item quantities and accuracy of this submittal is correct as required for the job. Any inaccuracies or deviations must be addressed with Cummins Inc. before release to manufacturing. Any releases of material to manufacturing by the above parties constitute an acceptance of the accuracy of the submittal. Any changes after release will be viewed as a change order, subject to pricing changes. Please take the time to review this package for accuracy to prevent any after-shipment problems that could cause delay in energization.

Cummins certifies that these drawings, material lists, specification and datasheets have been checked prior to submittal and they:

- accurately depict the proposed equipment
- provide current information to the date of the submittal and
- present true and accurate equipment information.

This Approval Drawing Package is submitted as our interpretation of the project requirements and/or the specifications for this job. Please note that issuance of these submittals shall not be deemed or interpreted as performance nor acceptance of your purchase order terms and conditions.

For questions or comments regarding this submittal, please contact the Cummins Project Manager listed on the title page.

TABLE OF CONTENTS

Section 1 - Project information Bill of material Fuel supply requirements	C150N6
Section 2 - Generator specification sheets Generator specification sheet Generator data sheet PowerCommand Control (PCC) specification sheet Alternator data sheet Alternator thermal damage curve Sound data sheet Cooling system data sheet Exhaust emission compliance statement Seismic certification(s) Prototype test summary	NAS-6298 NAS-6303 PDS-1569 ADS-212 Newage TDC MSP-3059b MCP-2070a EPA-2042f VMA-51070-01c PTS-649a
Section 3 - Generator accessories Circuit breaker information Battery charger specification sheet	SquareD NAAC-5943
Section 4 - Generator drawings and interconnects Generator outline drawing Generator options drawing Foundation drawing Enclosure outline drawing Circuit breaker installation drawing Interconnection wiring diagram Seismic installation drawing	A055J588 A055J592 A055J590 A055V240 A055B603 PCC2.3 interconnect A056M541
Section 5 - Warranty Generator warranty statement	A028U870

SECTION 1 PROJECT INFORMATION

August 4, 2023

Bill of Material

Feature Code	Description	Qty
A063B605	C150N6-A063B605	1
	C150 N6 GENSET, CONFIGURABLE SPARK IGNITED	
	A322-2 PACKING-SKID,POLY BAG	
	A331-2 DUTY RATING-STANDBY POWER	
	A366-2 ENGGOV-ELECTR, ISOCH ONLY	
	A422-2 ENGINE STARTER-12VDC MOTOR	
	B240-2 EXCITER/REG-TORQUE MATCH	
	BB88-2 ALT-60HZ,RECONNECT,FULL OUTPUT,120C,40C	
	AMB,IMS BB89-2 BATTERY CHARGER - 6 AMP, REGULATED	
	C284-2 SINGLE GAS FUEL - NATURAL GAS OR LP VAPOR	
	D041-2 ENGINE AIR CLEANER-NORMAL DUTY	
	E089-2 EXTENSION-COOLANT DRAIN	
	E125-2 ENGINE COOLING-HIGH AMBIENT AIR	
	TEMPERATURE	
	E154-2 COOLANT HEATER, EXTREME COLD AMBIENT	
	F065-2 RACK-BATTERY	
	F179-2 SKIDBASE-HOUSING READY	
	F231-2 ENCLOSURE-ALUMINUM, SOUND ATTENUATED,	
	LEVEL 1, WITH EXHAUST SYSTEM	
	F252-2 ENCLOSURE - WIND LOAD 180MPH, ASCE7-10	
	H012-2 GAUGE-OIL PRESSURE	
	H268-2 EXTENSION-OIL DRAIN	
	H389-2 SHUTDOWN-LOW COOLANT LVL	
	H487-2 ENG UIL HTR-120V,1PH	
	H536-2 DISPLAY LANGUAGE-ENGLISH	
	KB72-2 CB OR EB OR IB-BOTTOM ENTRY, RIGHT	
	KV03-2 LOAD CONNECTION-SINGLE	
	KTUO-2 CD,LOC A,200A-000A,3P,LSI,000VAC,100%,UL	
	LUDU-2 LITERATURE-ENGLISH	
	LUGU-Z LISTING-UL ZZUU 1 155 2 EMISSIONS CERTIFICATION SRAPK ICNITED ERA	
	ENERGENCY STATIONARY ACCEPSO	
	$R104_2$ V/OLTAGE-120/240 1PHASE 3 WIRE	
	$1 \times 10^{-2} \forall OLIAOL^{-1} Z U Z^{+} U, 11 IAOL, U U U U L$	

IMPORTANT!

FUEL SUPPLY REQUIREMENTS

Fuel Source: _____ Natural Gas or LP Vapor

Fuel Consumption at Full Load: <u>1915.0 - 783.0</u> SCFH

Required <u>Operating</u> Fuel Pressure: 6 - 13 in H₂O Fuel pressure required at the engine mounted regulator while the generator set is in operation, no load to full load. *Please Note: The pressure listed is not a static pressure. If the above pressure is not maintained while the generator set is operating up to full load, the system will not function as required and the fuel delivery system will need to be reworked to provide operating pressure as listed.*

Required Fuel Pressure **AND** Volume **MUST** be available under **ALL** operating conditions at the generator set location.

All generator sets must be installed with a flexible fuel line and fuel strainer prior to the engine connection:

Flexible Fuel Line:	[] included loose accessory
	[] included engine mounted

Fuel Strainer:

[] included loose accessory

SECTION 2 GENERATOR SPECIFICATIONS

Specification Sheet

125, 150, 175, & 200 kW Standby EPA Emissions

Description

Cummins Power Generation generator sets are fully integrated power generation systems providing optimum performance, reliability and versatility for stationary standby applications.

Features

Gas engine - Rugged 6-cyclinder Cummins QSJ8.9G spark-ignited engine delivers reliable power. The electronic air/fuel ratio control provides optimum engine performance and fast response to load changes.

Alternator - Several alternator sizes offer selectable motor starting capability with low reactance 2/3 pitch windings, low waveform distortion with non-linear loads and fault clearing short-circuit capability.

Control system - The PowerCommand[®] 2.3 electronic control is standard equipment and provides total generator set system integration including automatic remote starting/stopping, precise frequency and voltage regulation, alarm and status message display, output metering, auto-shutdown at fault detection and NFPA 110 Level 1 compliance.

Cooling system - Standard cooling package provides reliable running at up to 50 °C (122 °F) ambient temperature.

Enclosures - The aesthetically appealing enclosure incorporates special designs that deliver one of the quietest generators of its kind. Aluminum material plus durable powder coat paint provides the best anti-corrosion performance. The generator set enclosure has been evaluated to withstand 180 MPH wind loads in accordance with ASCE7-10. The design has hinged doors to provide easy access for service and maintenance.

NFPA - The generator set accepts full rated load in a single step in accordance with NFPA 110 for Level 1 systems.

Warranty and service - Backed by a comprehensive warranty and worldwide distributor and dealer network.

	Natur		
	Standb	Data sheets	
Model	kW	kVA	60 Hz
C125N6	125	156	NAD-6303
C150N6	150	188	NAD-6304
C175N6B	175	218	NAD-6632
C200N6B	200	250	NAD-6633

Generator Set Specifications

Governor regulation class	ISO 8528 Part 1 Class G3
Voltage regulation, no load to full load	± 1.0%
Random voltage variation	± 1.0%
Frequency regulation	Isochronous
Random frequency variation	± 0.25% @ 60 Hz
Radio frequency emissions compliance	ECC code title 47 part 15 class B

Engine Specifications

Design	Turbocharged and Aftercooled		
Bore	114.1 mm (4.49 in)		
Stroke	144.5 mm (5.69 in)		
Displacement	8.9 liters (543 in ³)		
Cylinder block	Cast iron, in-line 6 cylinder		
Battery capacity	850 amps standard, dual battery optional		
Battery charging alternator	100 amps		
Starting voltage	12-volt, negative ground		
Lube oil filter type(s)	Spin-on		
	125 kW - 50 °C (122 °F) ambient cooling system		
Standard cooling system	150 kW - 45 °C (113 °F) ambient cooling system		
Standard Cooling System	175 kW - 50° C (122° F) ambient cooling system		
	200 kW - 45° C (113° F) ambient cooling system		
Rated speed	1800 rpm		

Alternator Specifications

Design	Brushless, 4 pole, drip proof, revolving field
Stator	2/3 pitch
Rotor	Direct coupled, flexible disc
Insulation system	Class H per NEMA MG1-1.65
Standard temperature rise	120 °C (248 °F) standby
Exciter type	Torque match (shunt) with PMG as option
Alternator cooling	Direct drive centrifugal blower
AC waveform total harmonic distortion	< 5% no load to full linear load, < 3% for any single harmonic
Telephone influence factor (TIF)	< 50 per NEMA MG1-22.43
Telephone harmonic factor (THF)	< 3%

Available Voltages

1-phase	3-phase				
• 120/240	• 120/208	• 120/240	• 277/480	• 347/600	• 127/220

Generator Set Options

Fuel system

- □ 125 and 150 kW: Single fuel – natural gas or propane
- vapor, field selectable
- Dual fuel natural gas or propane vapor, auto changeover

□ 175 and 200 kW:

o Single fuel - natural gas Low fuel gas pressure warning

Engine

- □ Normal or Heavy-duty engine air cleaner
- □ Shut down low oil pressure
- Extension oil drain
- Engine oil heater

Electrical

- One, two or three circuit breaker configurations
- □ 80% rated circuit breakers □ 100% rated LSI circuit breakers

Generator Set Accessories

- Coolant heaters 1500W / 2000W
- Battery rack, single or dual battery
- Battery heater kit
- Engine oil heater
- Remote control displays
- Auxiliary output relays (2)
- Auxiliary configurable signal inputs (8) and relay outputs (8) П Annunciator – RS485

Control

- □ PC2.3 with AmpSentry □ PC3.3 with Paralleling
- option
- AC output analog meters
- □ Stop switch emergency
- □ Auxiliary output relays (2) Auxiliary configurable signal
- inputs (8) and relay outputs (8)

Alternator

- □ 120 °C temperature rise alternator □ 105 °C temperature rise
- alternator □ PMG
- □ Alternator heater. 120V Reconnectable full 1 phase output alternator

Enclosure

- □ Aluminum enclosures with muffler installed – green color
 - Weather
 - Sound Level 1
 Sound Level 2

Cooling system

Shutdown – low coolant level

Exhaust system

- □ Exhaust connector NPT Exhaust muffler mounted
- Generator set application
- □ Base barrier elevated genset □ Battery rack, single or dual battery
- □ Radiator outlet duct adapter

Warranty

- Base warranty 2 year / 1000 hours, standby
- □ 3-year standby warranty options
- □ 5-year standby warranty options
- Remote monitoring device PowerCommand 500/550 П Battery charger - stand-alone, 12V
- Circuit breakers
 - Enclosure Sound Level 1 to Sound Level 2 upgrade kit
- Base barrier - elevated generator set
- Mufflers - industrial, residential, or critical
- Alternator PMG
- Alternator heater

Our energy working for you.™

Winter

- □ Warning low coolant level
 - weather
- Coolant heater options: ○ < 4 °C (40 °F) - Cold</p>
- Extension coolant drain

Control System PowerCommand 2.3

An integrated generator set control system providing voltage regulation, engine protection and operator interface.

Power Management - Provides battery monitoring and testing features and smart-starting control system.

InPower™ – PC-based service tool available for detailed diagnostics.

PCCNet RS485 - Network interface (standard) to devices such as remote annunciator for NFPA 110 applications.

Control boards - Potted for environmental protection.

Ambient operation - Suitable for operation in ambient temperatures from -40 °C to +70 °C and altitudes to 13,000 feet (5,000 meters).

AC Protection

- AmpSentry protective relay
- Over current warning and shutdown
- Over and under voltage shutdown
- Over and under frequency shutdown
- Over excitation (loss of sensing) fault
- Field overload
- Overload warning
- Reverse kW shutdown
- Reverse VAR shutdown
- Short circuit protection

Engine protection

- Overspeed shutdown
- Low oil pressure warning and shutdown
- High coolant temperature warning and shutdown
- · Low coolant level warning or shutdown
- Low coolant temperature warning
- · High, low and weak battery voltage warning
- Fail to start (overcrank) shutdown
- · Fail to crank shutdown
- Redundant start disconnect
- Cranking lockout
- Sensor failure indication
- Low fuel level warning or shutdown
- Emergency stop
- Fuel-in-rupture-basin warning or shutdown
- Operator/display panel
- · Manual off switch
- 320 x 240 Pixels graphic LED backlight LCD with push button access for viewing engine and alternator data and providing setup, controls, and adjustments (English, Spanish, or French).
- LED lamps indicating genset running, not in auto, common warning, common shutdown, manual run mode and remote start
- Suitable for operation in ambient temperatures from -20 °C to +70 °C

Alternator data

- Line-to-line and Line-to-neutral AC volts
- 3-phase AC current
- Frequency
- Total kVa

Engine data

- DC voltage
- Lube oil pressure
- Coolant temperature
- Engine speed

Other data

- Generator set model data
- Start attempts, starts, running hours
- Fault history
- RS485 Modbus[®] interface
- Data logging and fault simulation (requires InPower service tool)

Digital governing (optional)

- Integrated digital electronic isochronous governor
- Temperature dynamic governing

Digital voltage regulation

- Integrated digital electronic voltage regulator
- 2-phase line-to-line sensing
- Configurable torque matching

Control functions

- Time delay start and cooldown
- Cycle cranking
- PCCNet interface
- (2) Configurable inputs
- (2) Configurable outputs
- Remote emergency stop
- Automatic transfer switch (ATS) control
- Generator set exercise, field adjustable

Options

- □ Auxiliary output relays (2)
- Remote annunciator with (3) configurable inputs and (4) configurable outputs
- □ PMG alternator excitation
- PowerCommand 500/550 for remote monitoring and alarm notification (accessory)
- □ Auxiliary, configurable signal inputs (8) and configurable relay outputs (8)

□ Digital governing

- □ AC output analog meters (bargraph)
- Color-coded graphical display of:
 - 3-phase AC voltage
 - 3-phase current
 - Frequency
 - kVa
- □ Remote operator panel

For further detail on PC 2.3, see document S-1569 For further detail on PC 3.3, see document S-1570

Ratings Definitions

Emergency standby power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-time running power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited Time Running Power (LTP) is in accordance with ISO 8528.

Prime power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base load (continuous) power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271 and BS 5514.

This outline drawing is for reference only. See respective model data sheet for specific model outline drawing number.

Do not use for installation design

Model	Dim "A"	Dim "B"	Dim '	'C"	Set Weight* wet
	mm (in.)	mm (in.)	mm (in.)	kg (lbs.)
		Open Set			
C125N6	2867 (113)	1016 (40)	1415	(56)	1580 (3483)
C150N6	2867 (113)	1016 (40)	1415	(56)	1580 (3483)
C175N6B	2867 (113)	1016 (40)	1478	(58)	1610 (3543)
C200N6B	2867 (143)	1016 (40)	1478	(58)	1698 (3735)
		Weather Protective Enclose	sure		
C125N6	2867 (113)	1016 (40)	1836	(72)	1661 (3662)
C150N6	2867 (11 <u>3)</u>	1016 (40)	1836	(72)	1661 (3662)
C175N6B	2867 (11	Refer to drawings for specif	ic	(72)	1691 (3728)
C200N6B	2867 (11	weights and dimensions		(72)	1779 (3922)
C125N6	3621 (143)	1016 (40)	1836	(72)	1776 (3915)
C150N6	3621 (143)	1016 (40)	1836	(72)	1776 (3915)
C175N6B	3621 (143)	1016 (40)	1836	(72)	1806 (3982)
C200N6B	3621 (143)	1016 (40)	1836	(72)	1894 (4176)
Sound Attenuated Enclosure Level 2					
C125N6	4061 (160)	1016 (40)	1836	(72)	1791 (3940)
C150N6	4061 (160)	1016 (40)	1836	(72)	1791 (3940)
C175N6B	4061 (160)	1016 (40)	1836	(72)	1821 (4015)
C200N6B	4061 (160)	1016 (40)	1836	(72)	1909 (4209)

* Weights above are average. Actual weight varies with product configuration

Codes and Standards

Codes or standards compliance may not be available with all model configurations - consult factory for availability.

	The Prototype Test Support (PTS) program verifies the performance integrity of the generator	Restricto To ISO 9001	This generator set is designed in facilities certified to ISO 9001 and manufactured in facilities certified to ISO 9001 or ISO 9002.
	bearing the PTS symbol meet the prototype test requirements of NFPA 110 for Level 1 systems.		The generator set is available Listed to UL 2200, Stationary Engine Generator Assemblies.
International	The generator set is certified to International	5	All low voltage models are CSA certified to product class 4215-01.
Building Code	Building Code (IBC) 2012.	U.S. EPA	Engine certified to U.S. EPA SI Stationary Emission Regulation 40 CFR, Part 60.

Warning: Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any building's electrical system except through an approved device or after building main switch is open.

North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA

Phone 763 574 5000 Fax 763 574 5298

Our energy working for you.™

©2022 Cummins All rights reserved. Cummins is a registered trademarks of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. NAS-6298-EN (12/22) A057Y417

power.cummins.com

Generator Set Data Sheet

Model:	C150N6
Frequency:	60 Hz
Fuel type:	Natural gas
kW rating:	150 Natural gas standby

Emissions level: EPA Emissions

	Natural gas			Propane				
	Standby			Standby				
Fuel consumption	kW (kVA)			kW (kVA)				
Ratings	150 (188)			150 (188)				
Load	1/4	1/2	3/4	Full	1/4	1/2	3/4	Full
scfh	718.7	1111.3	1487.2	<mark>1915.0</mark>	288.4	438.5	596.3	<mark>783.0</mark>
m³/hr	20.35	31.47	42.12	54.3	8.17	12.42	16.89	22.2

	Natural gas	Propane		
Engine	Standby Rating	Standby Rating		
Engine model	QSJ8.9G			
Configuration	Cast Iron, In line, 6 cylinde	rs		
Aspiration	Turbocharged and aftercoc	bled		
Gross engine power output, kWm (bhp)	179 (240)			
Bore, mm (in)	114.1 (4.49)			
Stroke, mm (in)	144.5 (5.69)			
Rated speed, rpm	1800			
Compression ratio	9.7:1	9.7:1		
Lube oil capacity, L (qt)	20.8 (22)			

Fuel supply pressure

Minimum operating pressure, kPa (in H ₂ O)	<mark>1.5 (6)</mark>
Maximum operating pressure, kPa (in H ₂ O)	<mark>3.5 (13)</mark>

	Natural gas	Propane
Air	Standby Rating	Standby Rating
Combustion air, m ³ /min (scfm)	13.7 (483)	13.9 (490)
Maximum normal duty air cleaner restriction, kPa (in H_2O)	0.37 (1.5)	
Maximum heavy-duty air cleaner restriction, kPa (in H ₂ O)	3.7 (15.0)	

	Natural gas	Propane
Exhaust	Standby Rating	Standby Rating
Exhaust flow at set rated load, m ³ /min (cfm)	40.8 (1440)	42.7 (1509)
Exhaust temperature at set rated load, °C (°F)	641.1 (1186)	668.9 (1236)
Maximum back pressure, kPa (inH ₂ O)	9 (36.1)	

Standard set-mounted radiator cooling	Natural gas Standby Rating	Propane Standby Rating
Ambient design, °C (°F)	50 (122)	
Fan load, kWm (HP)	10.3 (13.8)	
Coolant capacity (with radiator), L (US gal)	26 (6.9)	
Cooling system air flow, m ³ /min (scfm)	249.2 (8800)	
Maximum cooling air flow static restriction, kPa (inH ₂ O)	0.125 (0.5)	

Weights	Natural gas	Propane
Unit wet weight kg (lb)	1776 (3915)	

Note: Weights represent a set with standard features. See outline drawing for weights of other configurations

Derating factors

Natural gas

StandbyEngine power available up to 775 m (2540 ft.) and ambient temperatures up to 40° C (10 Above these conditions, derate at 4.25% per 300 m (985 ft.) and 2% per 10° C (18° F).	94° F).
--	---------

Propane

Standby	Engine power available up to 775 m (2540 ft.) and ambient temperatures up to 40° C (104° F). Above these conditions, derate at 4.25% per 300 m (985 ft.) and 2% per 10° C (18° F).
---------	--

Ratings definitions

Emergency standby power	Limited-time running power	Prime power (PRP)	Base load (continuous)
(ESP)	(LTP)		power (COP)
Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power to a constant electrical load for limited hours. Limited Time Running Power (LTP) is in accordance with ISO 8528.	Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) is in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271 and BS 5514.

Alternator data

Standard alternators	Single phase table		Three phase table				
Maximum temperature rise above 40° C ambient	120° C	120° C	120° C	120° C	120° C	120° C	120° C
Feature code	BB88-2	B986-2	B946-2	B943-2	B952-2	BB86-2	BB88-2
Alternator data sheet number	ADS-212	ADS-210	ADS-210	ADS-209	ADS-209	ADS-209	ADS-212
Voltage ranges	120/240	120/240	120/208	277/480	347/600	127/220	120 - 480
Voltage feature code	R104-2	R106-2	R098-2	R002-2	R114-2	R020-2	Varies by voltage
Surge kW	152	156	156	156	156	156	Varies by voltage
Full load current amps at standby rating	625	452	521	226	181	493	Varies by voltage

Optional alternators for improved starting capability	Single phase table	Three phase table				Full single phase output, reconnectable	
Maximum temperature rise above 40° C ambient	105° C	105° C	105° C	105° C	105° C	105° C	105° C
Feature code	BB87-2	BB94-2	BB93-2	BB95-2	BB92-2	BB85-2	BB87-2
Alternator data sheet number	ADS-212	ADS-210	ADS-210	ADS-209	ADS-209	ADS-210	ADS-212
Voltage ranges	120/240	120/240	120/208	277/480	347/600	127/220	120 – 480
Voltage feature code	R104-2	R106-2	R098-2	R002-2	R114-2	R020-2	Varies by voltage
Surge kW	153	157	156	157	157	156	Varies by voltage
Full load current amps at standby rating	625	452	521	226	181	493	Varies by voltage

Formulas for calculating full load currents:

Three phase output

Single phase output

kW x 1000 Voltage x 1.73 x 0.8

kW x SinglePhaseFactor x 1000 Voltage

Warning: Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any buildings electrical system except through an approved device or after building main switch is open.

North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA

Phone 763 574 5000 Fax 763 574 5298

Our energy working for you.™

©2022 Cummins All rights reserved. Cummins is a registered trademarks of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. NAS-6304-EN (01/22) A058H646

PowerCommand[®] 2.3 Control System

Control System Description

The PowerCommand control system is a

microprocessor-based generator set monitoring, metering and control system designed to meet the demands of today's engine driven generator sets. The integration of all control functions into a single control system provides enhanced reliability and performance, compared to conventional generator set control systems. These control systems have been designed and tested to meet the harsh environment in which gensets are typically applied.

Features

- 320 x 240 pixels graphic LED backlight LCD.
- Multiple language support.
- AmpSentry™ protective relay true alternator overcurrent protection.
- Real time clock for fault and event time stamping.
- Exerciser clock and time of day start/stop.
- Digital voltage regulation. Three phase full wave FET type regulator compatible with either shunt or PMG systems.
- Generator set monitoring and protection.
- 12 and 24 VDC battery operation.
- Modbus[®] interface for interconnecting to customer equipment.
- Warranty and service. Backed by a comprehensive warranty and worldwide distributor service network.
- Certifications suitable for use on generator sets that are designed, manufactured, tested and certified to relevant UL, NFPA, ISO, IEC, Mil Std., CE, UKCA and CSA standards.

PowerCommand Digital Genset Control PCC 2300

Description

The PowerCommand generator set control is suitable for use on a wide range of generator sets in non-paralleling applications. The PowerCommand control is compatible with shunt or PMG excitation style. It is suitable for use with reconnectable or non-reconnectable generators, and it can be configured for any frequency, voltage and power connection from 120-600 VAC Line-to-Line.

Power for this control system is derived from the generator set starting batteries. The control functions over a voltage range from 8 VDC to 30 VDC.

Features

- 12 and 24 VDC battery operation.
- Digital voltage regulation Three phase full wave FET type regulator compatible with either shunt or PMG systems. Sensing is three phase.
- Full authority engine communications (where applicable) Provides communication and control with the Engine
- due to thermal Control Module (ECM).
- AmpSentry" protection provides industry-leading alternator overcurrent protection:
 - Time-based generator protection applicable to both line-to-line and line-to-neutral, that can detect an unbalanced fault condition and swiftly react appropriately. Balanced faults can also be detected by AmpSentry and appropriate acted upon.
- Reduces the risk of Arc Flash overload or electrical faults by inverse time protection
- Common harnessing with higher feature Cummins controls. Allows for easy field upgrades.
- Generator set monitoring Monitors status of all critical engine and alternator functions.
- Digital genset metering (AC and DC).
- Genset battery monitoring system to sense and warn against a weak battery condition.
- Configurable for single or three phase AC metering.
- Engine starting Includes relay drivers for starter, Fuel Shut Off (FSO), glow plug/spark ignition power and switch B+ applications.
- Generator set protection Protects engine and alternator.
- Real time clock for fault and event time stamping.
- Exerciser clock and time of day start/stop.
- Advanced serviceability using InPower™, a PC-based software service tool.

- Environmental protection The control system is designed for reliable operation in harsh environments. The main control board is a fully encapsulated module that is protected from the elements.
- Modbus interface for interconnecting to customer equipment.
- Configurable inputs and outputs Four discrete inputs and four dry contact relay outputs.
- Warranty and service Backed by a comprehensive warranty and worldwide distributor service network.
- Certifications Suitable for use on generator sets that are designed, manufactured, tested and certified to relevant UL, NFPA, ISO, IEC, Mil Std., CE and CSA standards.

Base Control Functions

HMI Capability

<u>Operator adjustments</u> - The HMI includes provisions for many set up and adjustment functions.

<u>Generator set hardware data</u> - Access to the control and software part number, generator set rating in kVA and generator set model number is provided from the HMI or InPower.

Data logs - Includes engine run time, controller on time, number of start attempts, total kWh, and load profile (control logs data indicating the operating hours at percent of rated kW load, in 5% increments. The data is presented on the operation panel based on total operating hours on the generator.)

<u>Fault history</u> - Provides a record of the most recent fault conditions with control date and time stamp. Up to 32 events are stored in the control non-volatile memory.

Alternator data

- Voltage (single or three phase Line-to-Line and Line-to-Neutral)
- Current (single or three phase)
- kW, kVar, power factor, kVA (three phase and total)
- Frequency

<u>AmpSentry:</u> 3x current regulation for downstream tripping/motor inrush management. Thermal damage curve (3-phase short) or fixed timer (2 sec for 1- Phase Short or 5 sec for 2-Phase short).

Engine data

- Starting battery voltage
- Engine speed
- Engine temperature
- Engine oil pressure
- Engine oil temperature
- Intake manifold temperature
- Comprehensive Full Authority Engine (FAE) data (where applicable)

<u>Service adjustments</u> - The HMI includes provisions for adjustment and calibration of generator set control functions. Adjustments are protected by a password. Functions include:

Service adjustments (continued)

- Engine speed governor adjustments
- Voltage regulation adjustments
- Cycle cranking
- Configurable fault set up
- Configurable output set up
- Meter calibration
- Display language and units of measurement

Engine Control

<u>SAE-J1939 CAN</u> interface to full authority ECMs (where applicable). Provides data swapping between genset and engine controller for control, metering and diagnostics.

<u>12 VDC/24 VDC battery operations</u> - PowerCommand will operate either on 12 VDC or 24 VDC batteries.

<u>Temperature dependent governing dynamics</u> (with electronic governing) - modifies the engine governing control parameters as a function of engine temperature. This allows the engine to be more responsive when warm and more stable when operating at lower temperature levels.

<u>Isochronous governing</u> - (where applicable) Capable of controlling engine speed within +/-0.25% for any steady state load from no load to full load. Frequency drift will not exceed +/-0.5% for a 33 °C (60 °F) change in ambient temperature over an 8 hour period.

<u>Droop electronic speed governing</u> - Control can be adjusted to droop from 0 to 10% from no load to full load. <u>Remote start mode</u> - It accepts a ground signal from remote devices to automatically start the generator set and immediately accelerate to rated speed and voltage. The remote start signal will also wake up the control from sleep mode. The control can incorporate a time delay start and stop.

<u>Remote and local emergency stop</u> - The control accepts a ground signal from a local (genset mounted) or remote (facility mounted) emergency stop switch to cause the generator set to immediately shut down. The generator set is prevented from running or cranking with the switch engaged. If in sleep mode, activation of either emergency stop switch will wakeup the control.

<u>Sleep mode</u> - The control includes a configurable low current draw state to minimize starting battery current draw when the genset is not operating. The control can also be configured to go into a low current state while in auto for prime applications or applications without a battery charger.

Engine starting - The control system supports automatic engine starting. Primary and backup start disconnects are achieved by one of two methods: magnetic pickup or main alternator output frequency. The control also supports configurable glow plug control when applicable.

<u>Cycle cranking</u> - Is configurable for the number of starting cycles (1 to 7) and duration of crank and rest periods. Control includes starter protection algorithms to prevent the operator from specifying a starting sequence that might be damaging. <u>Time delay start and stop (cooldown)</u> - Configurable for time delay of 0-300 seconds prior to starting after receiving a remote start signal and for time delay of 0-600 seconds prior to shut down after signal to stop in normal operation modes. Default for both time delay periods is 0 seconds.

Alternator Control

The control includes an integrated three phase Line-to-Line sensing voltage regulation system that is compatible with shunt or PMG excitation systems. The voltage regulation system is a three phase full wave rectified and has an FET output for good motor starting capability. Major system features include:

<u>Digital output voltage regulation</u> - Capable of regulating output voltage to within +/-1.0% for any loads between no load and full load. Voltage drift will not exceed +/- 1.5% for a 40 °C (104 °F) change in temperature in an eight hour period. On engine starting or sudden load acceptance, voltage is controlled to a maximum of 5% overshoot over nominal level. The automatic voltage regulator feature can be disabled to allow the use of an external voltage regulator.

<u>Droop voltage regulation</u> - Control can be adjusted to droop from 0-10% from no load to full load.

<u>Torque-matched V/Hz overload control</u> - The voltage rolloff set point and rate of decay (i.e. the slope of the V/Hz curve) is adjustable in the control.

<u>Fault current regulation</u> - PowerCommand will regulate the output current on any phase to a maximum of three times rated current under fault conditions for both single phase and three phase faults. In conjunction with a permanent magnet generator, it will provide three times rated current on all phases for motor starting and short circuit coordination purpose.

Protective Functions

On operation of a protective function the control will indicate a fault by illuminating the appropriate status LED on the HMI, as well as display the fault code and fault description on the LCD. The nature of the fault and time of occurrence are logged in the control. The service manual and InPower service tool provide service keys and procedures based on the service codes provided. Protective functions include:

Battle Short Mode

When enabled and the *battle short* switch is active, the control will allow some shutdown faults to be bypassed. If a bypassed shutdown fault occurs, the fault code and description will still be annunciated, but the genset will not shutdown. This will be followed by a *fail to shutdown* fault. Emergency stop shutdowns and others that are critical for proper operation are not bypassed. Please refer to the control application guide or manual for list of these faults.

Derate

The derate function reduces output power of the genset in response to a fault condition. If a derate command occurs while operating on an isolated bus, the control will issue commands to reduce the load on the genset via contact closures or modbus.

Configurable Alarm and Status Inputs

The control accepts up to four alarm or status inputs (configurable contact closed to ground or open) to indicate a configurable (customer-specified) condition.

The control is programmable for warning, shutdown or status indication and for labeling the input.

Emergency Stop

Annunciated whenever either emergency stop signal is received from external switch.

Full Authority Electronic Engine Protection

Engine fault detection is handled inside the engine ECM. Fault information is communicated via the SAE-J1939 data link for annunciation in the HMI.

General Engine Protection

Low and high battery voltage warning - Indicates status of battery charging system (failure) by continuously monitoring battery voltage.

<u>Weak battery warning</u> - The control system will test the battery each time the generator set is signaled to start and indicate a warning if the battery indicates impending failure.

Fail to start (overcrank) shutdown - The control system will indicate a fault if the generator set fails to start by the completion of the engine crack sequence.

Fail to crank shutdown - Control has signaled starter to crank engine but engine does not rotate.

<u>Cranking lockout</u> - The control will not allow the starter to attempt to engage or to crank the engine when the engine is rotating.

Alternator Protection

<u>AmpSentry protective relay</u> - A comprehensive monitoring and control system integral to the PowerCommand Control System that guards the electrical integrity of the alternator and power system by providing protection against a wide array of fault conditions in the generator set or in the load. It also provides single and three phase fault current regulation so that downstream protective devices have the maximum current available to quickly clear fault conditions without subjecting the alternator to potentially catastrophic failure conditions. Thermal damage curve (3-Phase short) or fixed timer (2 sec for 1-Phase short, 5 sec for 2-Phase short). See document R1053 for a full-size time over current curve.

<u>AmpSentry Maintenance Mode (AMM)</u> - Instantaneous tripping, if AmpSentry Maintenance mode is active (50mS response to turn off AVR excitation/shutdown genset) for arc flash reduction when personnel are near genset.

<u>High AC voltage shutdown (59)</u> - Output voltage on any phase exceeds preset values. Time to trip is inversely proportional to amount above threshold. Values adjustable from 105-125% of nominal voltage, with time delay adjustable from 0.1-10 seconds. Default value is 110% for 10 seconds.

Low AC voltage shutdown (27) - Voltage on any phase has dropped below a preset value. Adjustable over a range of 50-95% of reference voltage, time delay 2-20 seconds. Default value is 85% for 10 seconds. Function tracks reference voltage. Control does not nuisance trip when voltage varies due to the control directing voltage to drop, such as during a V/Hz roll-off during synchronizing.

<u>Under frequency shutdown (81 u)</u> - Generator set output frequency cannot be maintained. Settings are adjustable from 2-10 Hz below reference governor set point, for a 5- 20 second time delay. Default: 6 Hz, 10 seconds.

Under frequency protection is disabled when excitation is switched off, such as when engine is operating in idle speed mode.

<u>Over frequency shutdown/warning (81 o)</u> - Generator set is operating at a potentially damaging frequency level. Settings are adjustable from 2-10 Hz above nominal governor set point for a 1-20 second time delay. Default: 6 Hz,

20 seconds, disabled.

Overcurrent warning/shutdown - Thresholds and time delays are configurable. Implementation of the thermal damage curve with instantaneous trip level calculated based on current transformer ratio and application power rating.

Loss of sensing voltage shutdown - Shutdown of generator set will occur on loss of voltage sensing inputs to the control.

<u>Field overload shutdown</u> - Monitors field voltage to shutdown generator set when a field overload condition occurs.

Over load (kW) warning - Provides a warning indication when engine is operating at a load level over a set point.

Adjustment range: 80-140% of application rated kW, 0-120 second delay. Defaults: 105%, 60 seconds.

<u>Reverse power shutdown (32)</u> - Adjustment range: 5-20% of standby kW rating, delay 1-15 seconds. Default: 10%, 3 seconds.

<u>Reverse Var shutdown</u> - Shutdown level is adjustable: 15-50% of rated Var output, delay 10-60 seconds. Default: 20%, 10 seconds.

<u>Short circuit protection</u> - Output current on any phase is more than 175% of rating and approaching the thermal damage point of the alternator. Control includes algorithms to protect alternator from repeated over current conditions over a short period of time.

Field Control Interface

Input signals to the PowerCommand control include:

- Coolant level (where applicable)
- Fuel level (where applicable)
- Remote emergency stop
- Remote fault reset
- Remote start
- Battleshort
- Rupture basin
- Start type signal
- Configurable inputs Control includes (4) input signals from customer discrete devices that are configurable for warning, shutdown or status indication, as well as message displayed

Output signals from the PowerCommand control include:

- Load dump signal: Operates when the generator set is in an overload condition.
- Delayed off signal: Time delay based output which will continue to remain active after the control has removed the run command. Adjustment range: 0 – 120 seconds. Default: 0 seconds.

- Configurable relay outputs: Control includes (4) relay output contacts (3 A, 30 VDC). These outputs can be configured to activate on any control warning or shutdown fault as well as ready to load, not in auto, common alarm, common warning and common shutdown.
- Ready to load (generator set running) signal: Operates when the generator set has reached 90% of rated speed and voltage and latches until generator set is switched to off or idle mode.

Communications Connections Include:

- PC tool interface: This RS-485 communication port allows the control to communicate with a personal computer running InPower software.
- Modbus RS-485 port: Allows the control to communicate with external devices such as PLCs using Modbus protocol.

Note - An RS-232 or USB to RS-485 converter is required for communication between PC and control.

- Networking: This RS-485 communication port allows connection from the control to the other Cummins products.

Mechanical Drawings

PowerCommand Human Machine Interface HMI320

Description

This control system includes an intuitive operator interface panel that allows for complete genset control as well as system metering, fault annunciation, configuration and diagnostics. The interface includes five genset status LED lamps with both internationally accepted symbols and English text to comply with customer's needs. The interface also includes an LED backlit LCD display with tactile feel soft-switches for easy operation and screen navigation. It is configurable for units of measurement and has adjustable screen contrast and brightness.

The *run/off/auto* switch function is integrated into the interface panel.

All data on the control can be viewed by scrolling through screens with the navigation keys. The control displays the current active fault and a time-ordered history of the five previous faults.

Features

- LED indicating lamps:
 - Genset running
 - Remote start
- Not in auto
- Shutdown
- Warning
- Auto
- Manual and stop
- 320 x 240 pixels graphic LED backlight LCD.
- Four tactile feel membrane switches for LCD defined operation. The functions of these switches are defined dynamically on the LCD.
- Seven tactile feel membrane switches dedicated screen navigation buttons for up, down, left, right, ok, home and cancel.
- Six tactile feel membrane switches dedicated to control for auto, stop, manual, manual start, fault reset and lamp test/panel lamps.

- Two tactile feel membrane switches dedicated to control of circuit breaker (where applicable).
- Allows for complete genset control setup.
- Certifications: Suitable for use on generator sets that are designed, manufactured, tested and certified to relevant UL, NFPA, ISO, IEC, Mil Std., CE and CSA standards.
- LCD languages supported: English, Spanish, French, German, Italian, Greek, Dutch, Portuguese, Finnish, Norwegian, Danish, Russian and Chinese Characters.

Communications connections include:

- PC tool interface This RS-485 communication port allows the HMI to communicate with a personal computer running InPower.
- This RS-485 communication port allows the HMI to communicate with the main control board.

Mechanical Drawing

Software

InPower (beyond 6.5 version) is a PC-based software service tool that is designed to directly communicate to PowerCommand generator sets and transfer switches, to facilitate service and monitoring of these products.

Environment

The control is designed for proper operation without recalibration in ambient temperatures from -40 °C to +70° C (-40 °F to 158 °F) and for storage from -55 °C to +80 °C (-67 °F to 176 °F). Control will operate with humidity up to 95%, non-condensing.

The HMI is designed for proper operation in ambient temperatures from -20 °C to +70 °C (-4 °F to 158 °F) and for storage from -30 °C to +80 °C (-22 °F to 176 °F).

The control board is fully encapsulated to provide superior resistance to dust and moisture. Display panel has a single membrane surface, which is impervious to effects of dust, moisture, oil and exhaust fumes. This panel uses a sealed membrane to provide long reliable service life in harsh environments.

The control system is specifically designed and tested for resistance to RFI/EMI and to resist effects of vibration to provide a long reliable life when mounted on a generator set. The control includes transient voltage surge suppression to provide compliance to referenced standards.

Certifications

PowerCommand meets or exceeds the requirements of the following codes and standards:

- NFPA 110 for level 1 and 2 systems.
- ISO 8528-4: 1993 compliance, controls and switchgear.
- CE marking: The CE marking is only valid when equipment is used in a fixed installation application. Material compliance declaration is available upon request.
- UKCA marking: The UKCA marking is only valid when equipment is used in a fixed installation application. Material compliance declaration is available upon request.
- EN50081-1,2 residential/light industrial emissions or industrial emissions.
- EN50082-1,2 residential/light industrial or industrial susceptibility.
- ISO 7637-2, level 2; DC supply surge voltage test.
- Mil Std 202C, Method 101 and ASTM B117: Salt fog test.
- UL 6200 recognized and suitable for use on UL 2200 Listed generator sets.
- CSA C282-M1999 compliance
- CSA 22.2 No. 14 M91 industrial controls.
- PowerCommand control systems and generator sets are designed and manufactured in ISO 9001 certified facilities.

Warranty

All components and subsystems are covered by an express limited one year warranty. Other optional and extended factory warranties and local distributor maintenance agreements are available.

For more information contact your local Cummins distributor or visit power.cummins.com

Our energy working for you.™

Alternator data sheet

Frame size: UCD3J

Characteristics										
Weights:	W	ound state	or assembl	y:	670.205 lk	C		304 kg		
	R	otor assen	nbly:		597.45 lb			271.9 kg		
	C	omplete al	ternator:		1602.76 lt	C		727 kg		
Maximum speed:					2250 rpm					
Excitation current:	Fu	ull load:			2.20 Amp	s				
	N	o load:			0.50 Amps					
Insulation system:	C	ass H thro	oughout							
1 Ø Ratings	(1.0 power factor)		60	Hz (windin	<mark>g no)</mark>		50 Hz (winding no)			
(Based on specific tempera	ature rise at 40 °C	C	ouble delt	а	4 lead		Double delta			
ambient temperature)								10 120		
		120/240		120/240		2	<u>220-240</u>			
125 °C Rise ratings	kW/kVA		161/201		175/219		1	40/175		
105 °C Rise ratings	kW/kVA		150/188		157/196		1	26/158		
3 Ø Ratings	(0.8 power factor)	Upp	er broad ra	ange	LBR*	347/600		Broad	range	
(Based on specified temper at 40 °C ambient temperatu	rature rise ure)	120/208 <u>240/416</u>	127/220 <u>255/440</u>	139/240 <u>277/480</u>	190-208 <u>380-416</u>	<u>347/600</u>	110/190 <u>220/380</u>	115/200 <u>230/400</u>	120/20 <u>240/41</u>	8 127/220 5 <u>254/440</u>
150 °C Rise ratings	kW	230	240	255	255	230	200	200	200	172
	kVA	288	300	319	319	288	250	250	250	215
125 °C Rise ratings	kW	215	225	240	240	215	184	184	184	164
	KVA	269	281	300	300	269	230	230	230	205
105 °C Rise ratings	KVV kVA	200 250	211	220	220	200	210	210	210	140 185
	kW	170	180	190	190	170	154	154	154	128
80 °C Rise ratings	kVA	213	225	238	238	213	193	193	193	160
3 Ø Reactances	(per unit, ±10%)	<u>416</u>	<u>440</u>	<u>480</u>	<u>380</u>	<u>600</u>	<u>380</u>	<u>400</u>	<u>415</u>	<u>440</u>
(Based on full load at 105 °	°C rise rating)									
Synchronous		2.651	2.457	2.221	2.00	2.00	1.939	1.75	1.626	N/A
Transient		0.164	0.153	0.137	0.13	0.13	0.103	0.093	0.086	N/A
Subtransient		0.096	0.09	0.08	0.07	0.07	0.07	0.064	0.059	N/A
Negative sequence		0.117	0.109	0.098	0.14	0.14	0.117	0.105	0.098	N/A
Zero sequence		0.048	0.045	0.04	0.04	0.04	0.044	0.04	0.037	N/A
3 Ø Motor startin	ng	<u>E</u>	Broad rang	<u>e</u>	LBR*	<u>600</u>		Broad	range	
Maximum kVA	(Shunt)		770		770	770		53	35	
(90% sustained voltage)	(PMG)		920		920	920		67	78	
Time constants	(Sec)									
Transient			0.045		0.045	0.045		0.0	45	
Subtransient			0.015		0.015	0.015		0.0	15	
Open circuit			1.270		1.270	1.270		1.2	70	
DC			0.030		0.030	0.030		0.0	30	
Windings	(@ 20° C)									
Stator resistance	(Ohms per phase)		0.0128		0.0128	0.0128		0.01	128	
Rotor resistance	(Ohms)		2.0000		2.0000	2.0000		2.00	000	
Number of leads			12		12	6		1	2	

* Lower broad range 110/190 thru 120/208, 220/380 thru 240/416.

Sound Pressure Level @ 7 meters, dB(A)

See notes	1-6 listed below	
-----------	------------------	--

Configuration	Exhaust	Position (Note 1)								
Configuration	System	1	2	3	4	5	6	7	8	Average
Standard – Unhoused	Infinite Exhaust	79.5	82.2	82.6	83.9	79.3	82.6	82.5	81.7	82.0
F216-2 Weather Protective Aluminium	Mounted	82.0	80.6	76.2	81.0	79.2	85.4	79.4	82.8	81.6
F231-2 Sound Attenuated Level 1, Aluminium	Mounted	81.1	76.3	71.9	72.8	72.2	73.0	71.5	<mark>76.1</mark>	75.7
F217-2 Sound Attenuated Level 2, Aluminium	Mounted	72.8	72.5	69.3	71.5	70.9	71.3	69.4	71.8	71.3

Sound Power Level, dB(A)

	Exhaust System				Octave	Band Ce	nter Freq	uency (Hz	<u>z)</u>			Overall
Configuration		31.5	63	125	250	500	1000	2000	4000	8000	16000	Sound Power Level
Standard – Unhoused	Infinite Exhaust	59.0	73.8	86.0	94.7	103.0	103.9	104.3	103.0	100.1	89.5	110.2
F216-2 Weather Protective Aluminium	Mounted	63.2	83.3	92.1	99.5	103.7	103.7	104.0	103.9	96.5	81.9	110.5
F231-2 Sound Attenuated Level 1, Aluminium	Mounted	<mark>62.2</mark>	77.2	87.2	92.4	96.2	97.0	96.5	94.3	96.7	80.0	103.7
F217-2 Sound Attenuated Level 2, Aluminium	Mounted	62.6	76.4	86.3	90.2	93.1	92.1	90.6	88.8	89.2	75.3	99.0

Exhaust Sound Power Level, dB(A)

See notes 2 & 9 listed below

			Overall Sound								
Open Exhaust (No Muffler) @ Rated	31.5	63	125	250	500	1000	2000	4000	8000	16000	Power Level
Load	56.0	89.6	97.4	101.2	108.2	110.5	113.0	115.7	114.4	105.8	120.3

Note:

- 1. Position 1 faces the Generator front per ISO 8528-10. The positions proceed around the generator set in a counter-clockwise direction in 45° increments. All positions are at 7m (23 ft) from the surface of the generator set and 1.2 m (48 inches) from floor level.
- 2. Sound levels are subject to instrumentation, measurement, installation and manufacturing variability.
- 3. Data based on full rated load.
- 4. Sound data for generator set with infinite exhaust do not include exhaust noise.
- 5. Sound Pressure Levels are measured per ANSI S1.13 and ANSI S12.18, as applicable.
- 6. Reference sound pressure is 20 µPa.
- 7. Sound Power Levels per ISO 3744 and ISO 8528-10, as applicable.
- 8. Reference power 1 pW (10⁻¹² W)
- 9. Exhaust Sound Power Levels are per ISO 6798, as applicable.

High Ambient Air Temperature Radiator Cooling System

				Max (U	Cooling @ nhoused (i	Air Flow S nches wat	iction, er)	Housed in Free Air, No Air Discharge Restriction			
				0.0/0.0	0.25/6.4	0.5/12.7	0.75/19.1	1.0/25.4	Weather (F216)	Sound Level 1 (F231)	Sound Level 2 (F217)
	Fuel Type	Duty	Rating (kW)	Maximum Allowable Ambient Temperature, Degree C							
<mark>60</mark> Hz	Natural Gas	Standby	150	55	55	50	N/A	N/A	47	<mark>45</mark>	45
	Propane	Standby	150	53	51	49	N/A	N/A	47	<mark>45</mark>	45

Notes:

- 1. Data shown are anticipated cooling performance for typical generator set.
- 2. Cooling data is based on 1000 ft (305 m) site test location.
- 3. Generator set power output may need to be reduced at high ambient conditions. Consult generator set data sheet for derate schedules.
- 4. Cooling performance may be reduced due to several factors including but not limited to: Incorrect installation, improper operation, fouling of the cooling system, and other site installation variables.

2023 EPA Exhaust Emission Compliance Statement C150N6 Standby

60 Hz Spark Ignited Generator Set

Compliance Information:

The engine used in this generator set complies with U.S. EPA emissions regulations under the provisions of 40 CFR Part 60, Stationary Emergency Spark-Ignited emissions limits when tested per ISO 8178 D1.

Engine Manufacturer:	Cummins Inc.
EPA Certificate Number:	PCEXB08.9ALB-007
Effective Date:	07/27/2022
Date Issued:	07/27/2022
EPA Engine Family (Cummins Emissions Family):	PCEXB08.9ALB

Engine Information:

Model:	QSJ8.9G-G2
Engine Nameplate HP:	240
Туре:	4 Cycle, In-Line, 6 Cylinder
Aspiration:	Turbocharged and Aftercooled
Emission Control Device:	Electronic Air/Fuel Ratio Control and Closed-Loop Breather System

Bore:
Stroke:
Displacement:
Compression Ratio:

4.49 in. (114 mm) 5.69 in. (145 mm) 543.0 cu. in. (8.9 liters) 8.5:1

U.S. Environmental Protection Agency Station Emergency SI Emission Limits									
		Gr	ams per BHP-	•hr	<u>Grams per kW_m-hr</u>				
	Natural Gas	<u>NOx</u>	VOC	<u>co</u>	<u>NOx</u>	VOC	<u>CO</u>		
	EPA Emissions Limit	2.0	1.0	4.0	2.7	1.3	5.4		

	<u>G</u>	rams per BHP-	<u>hr</u>	Gr	ams per kWm	<u>-hr</u>
Propane (LP)	<u>NOx</u>	VOC	<u>CO</u>	<u>NOx</u>	VOC	<u>CO</u>
EPA Emissions Limit	2.0	1.0	4.0	2.7	1.3	5.4

Notes:

Tests conducted using alternate methods, instrumentation, fuel or reference conditions can yield different results.

Engine operation with excessive air intake or exhaust restriction beyond published maximum limits, or with improper maintenance, may result in elevated emission levels.

CERTIFICATE OF COMPLIANCE SEISMIC DESIGN OF NONSTRUCTURAL COMPONENTS AND SYSTEMS

Certification No.

VMA-51070-01C (Revision 11)

Expiration Date: 4/30/2026

Certification Parameters:

The nonstructural products (mechanical and/or electrical components) listed on this certificate are CERTIFIED¹ FOR SEISMIC APPLICATIONS in accordance with the following building code² releases.

IBC 2018, 2015, 2012

The following model designations, options, and accessories are included in this certification. Reference report number VMA-51070-01 as issued by VMC Group for a complete list of certified models, included accessories/options, and certified installation methods.

Cummins Power Generation, Inc.; Gas Generators C20-200N6 Series; 20kW - 200kW

The above referenced equipment is **APPROVED** for seismic application when properly installed³, used as intended, and contains a Seismic Certification Label referencing this Certificate of Compliance⁴. As limited by the tabulated values, below grade, grade, and roof-level installations, installations in essential facilities, for life safety applications, and/or of equipment containing hazardous contents are permitted and included in this certification with an Equipment Importance Factor assigned as I_p =1.5. The equipment is qualified by successful seismic shake table testing at the nationally recognized Dynamic Certification Laboratories under the review of the ISO Accredited Product Certification Agency, the VMC Group.

Certified Seismic Design Levels								
	Importance $I_p \le 1.5$	z/h ≤ 1.0	z/h = 0.0					
IBC	Soil Classes A-E Risk Categories I-IV Design Categories A-F	S _{DS} ≤ 2.500 g	S _{DS} ≤ 2.500 g					

Certified Seismic Installation Methods

Rigid Mounting From Unit Base To Rigid Structure

HEADQUARTERS

113 Main Street Bloomingdale, NJ 07403 Phone: 973.838.1780 Toll Free: 800.569.8423 Fax: 973.492.8430

102S-103387 Rev18

CALIFORNIA 180 Promenade Circle Suite 300 Sacramento, CA 95834 Phone: 916.634.7771

TEXAS

11930 Brittmoore Park Drive Houston, TX 77041 Phone: 713.466.0003 Fax: 713.466.1355 thevmcgroup.com

CERTIFICATE OF COMPLIANCE SEISMIC DESIGN OF NONSTRUCTURAL COMPONENTS AND SYSTEMS

Certified Product Table:

Model	Max Rating [kW]	Max Depth [in]	Max Width [in]	Max Height [in]	Max Weight [lb]
C20N6	20				1,110
C22N6	22	82	82		1.150
C25N6	25		24	16	,
C30N6, C30N6H	30		54	40	1,300
C36N6, C36N6H	36	 			1,380
C40N6, C40N6H	40	104			1,420
C45N6, C45N6H	45				2,580
C50N6, C50N6H	50				2,600
C60N6, C60N6H	60				2,900
C70N6	70	 	 		2,870
C80N6	80	136		58	3,030
C100N6	100		40		3,170
C125N6	125	 	 		3,770
C150N6	150	160	 	72	4,350
C175N6, C200N6	200	1	1		4,663
C200N6		1	1	83	4,140

Note: "H" indicates high speed (3600RPM, as opposed to the standard 1800RPM) Note: Dimensions and Weight include sound level 2 (SL2) enclosure baffle

VMC GROUP

THE POWER OF TOGETHER™

Group	Туре	S _{DS} (z/h=0)	S _{DS} (z/h=1)	A _{Flex-H}	A _{Rig-H}	A _{Flex-V}	A _{Rig-V}	F_p/W_p
Seismic	AC156	2.500	2.500	4.000	3.000	1.667	0.667	1.875

This certification includes the open generator set and the enclosed generator set. The generator set and included options shall be a catalogue design and factory supplied. The generator set and applicable options shall be installed an attached to the building structure per the manufacturer supplied seismic installation instructions. This certification excludes all non-factory supplied accessories, including but not limited to mufflers, isolation/restraint devices, remote control panels, remote radiators, pumps and other electrical/mechanical components.

VMA-51070-01C (Revision 11) Issue Date: Friday, July 3, 2015 Revision Date: Friday, April 28, 2023 Expiration Date: Thursday, April 30, 2026

cummins

CERTIFICATE OF COMPLIANCE SEISMIC DESIGN OF NONSTRUCTURAL COMPONENTS AND SYSTEMS

Notes & Comments:

- 1. All equipment listed herein successfully passed the seismic acceptance criteria for shake testing non-structural components and systems as set forth in the ICC AC-156. The Test Response Spectrum (TRS) enveloped the Required Response Spectrum (RRS) for all units tested. The tested units were representative sample(s) of a contingent of models and all remained captive and structurally sound after the seismic shake simulation. The units also remained functionally operational after the simulation testing as functional testing was completed by the equipment manufacturer before and after the seismic simulations. Although a seismic qualified unit inherently contains some wind resisting capacity, that capacity is undetermined and is excluded from this certification. Snow/Ice loads have been neglected and thus limit the unit to be installed both indoors (covered by an independent protective structure) and out of doors (exposed to accumulating snow/ice) for ground snow loads no greater than 30 psf for all applications.
- 2. The following building codes are addressed under this certification:

VMC GROUP

THE POWER OF TOGETHER"

- IBC 2018 referencing ASCE7-16 and ICC-ES AC-156
- IBC 2015 referencing ASCE7-10 and ICC-ES AC-156
- IBC 2012 referencing ASCE7-10 and ICC-ES AC-156
- 3. Refer to the manufacturer supplied installation drawings for anchor requirements and mounting considerations for seismic applications. Required anchor locations, size, style, and load capacities (tension and shear) may be specified on the installation drawings or specified by a 3rd party. Mounting requirement details such as anchor brand, type, embedment depth, edge spacing, anchor-to-anchor spacing, concrete strength, special inspection, wall design, and attachment to non-building structures must be outlined and approved by the Engineer of Record for the project or building. Structural walls, structural floors, and housekeeping pads must also be seismically designed and approved by the project or building Structural Engineer of Record to withstand the seismic anchor loads as defined on the installation drawings. The installing contractor is responsible for ensuring the proper installation of all anchors and mounting hardware.
- 4. For this certificate and certification to remain valid, this certificate must correspond to the "Seismic Certification Label" found affixed to the unit by the factory. The label ensures the manufacturer built the unit in conformance to the IBC seismic design criteria set forth by the Certified Seismic Qualification Agency, the VMC Group, and meets the seismic design levels claimed by this certificate.
- 5. Mechanical, Electrical, and Plumbing connections to the equipment must be flexibly attached as to not transfer load through the connection. The structural integrity of any conduit, cable trays, piping, ductwork and/or flexible connections is the responsibility of others. This certification makes no statements of compliance in regards to NEMA, IP, UL, CSA, or other relevant standards after a seismic event. For compliance to other relevant standards, please contact the manufacturer.
- This certificate applies to units manufactured at: Cummins Power Generation Inc., 1400 73rd Ave. NE, Minneapolis, MN 55432
- 7. This certification follows the VMC Group's ISO-17065 Scheme.

fol / A.C.

John P. Giuliano, PE President, VMC Group

VMA-51070-01C (Revision 11) Issue Date: Friday, July 3, 2015 Revision Date: Friday, April 28, 2023 Expiration Date: Thursday, April 30, 2026

102S-103387 Rev18

Generator set models

C125N6

C150N6

Prototype Test Support (PTS) 60 Hz Test Summary

Model:

Engine:

Representative prototype

C150N6

QSJ8.9G-G2

		Alternator:	UC27J			
The following summarizes prototype testing conducted on the designated representative prototype of the specified models. This testing is conducted to verify the complete generator set electrical and mechanical design integrity.						
Maximum surge powe	er: 156.4 kW	Steady sta	te perform	ance.		
The generator set was ev maximum surge power.	aluated to determine the stated	The generat	or set was te e. It was with	ested to verif in the specif	y steady state ied maximum	e operating limits.
Maximum motor start	ing: 220 kVA	Voltag	e regulation:		±1%	
The generator set was tes	sted to simulate motor starting by	Rando	m voltage va	ariation:	± 1%	
applying the specified kV/	A load at low lagging power factor	Freque	ency regulati	on:	Isochron	ous
(0.4 or lower). With this lo recovered to a minimum of	ad applied, the generator set of 90% rated voltage	Rando	m frequency	variation:	± 0.5%	
Alternator temperatur	e rise:	Transient	performan	ce:		
The highest rated temperature reported as follows to veri rises do not exceed allow insulation. Tests were co resistance and embedded Only the highest temperature	ature rise (120 °C) test result are fy that worst case temperature able NEMA MG1 limits for class H nducted per IEEE 115, rise by d detector, with rated voltages. tures are reported.	The generator set was tested with the listed alternator to verify single step loading capability as required by NFPA 110. Voltage and frequency response on load addition or rejection were evaluated. The following results were recorded at 0.8 power factor:				
		Full load acc	ceptance:			
Location	Maximum Rise (°C)	Voltag	e dip:		26.9%	
Alternator Stator:	N/A	Recov	ery time:	Ę	5.3 seconds	
Alternator Rotor:	N/A	Freque	ency dip:		16.2%	
Exciter Stator:	N/A	Recov	ery time:	6	6.3 seconds	
Exciter Rotor:	N/A					
		Full load reje	ection:			
Torsional analysis an	d testing:	Voltag	e rise:		12.5%	
The generator set with UC	C27J was tested to verify that the	Recov	ery time:		2.2 seconds	
design is not subjected to	harmful torsional stresses. A	Freque	ency rise:		15.7%	
over the speed range of 1	ransducer output was conducted 650 to 1950 RPM.	Recovery time: 4.5 seconds				
Cooling system:	50 °C ambient	Harmonic	analysis:			
oooning system.	0.5 in H2O restriction		(per MIL-S	TD-705B, M	ethod 601.4)	
			Line t	o Line	Line to	Neutral
The cooling system was t temperature and static res	ested to determine ambient	Harmonic	No load	Full load	No load	Full load
performed at full rated loa	d elevated ambient temperature	3	0.0	0.1	0.0	0.1
under static restriction co	nditions.	5	0.8	1.2	0.8	1.2
Durability:		7	0.7	2.2	0.7	2.1
The generator act was an	biacted to a 1500 hour	9	0.0	0.0	0.0	0.0
endurance test replicating	i field duty cycles operating at	11	0.2	0.3	0.2	0.3
variable load up to the sta	indby rating based upon MIL-	13	0.2	0.4	0.2	0.4
SID-705 to verify structur	a soundness and durability of the	15	0.0	0.0	0.0	0.1
doolgn.		10	0.0	0.0	0.0	0.1
		I				

SECTION 3 GENERATOR ACCESSORIES

Product data sheet

Specifications

Circuit breaker, PowerPact L, unit mount, Micrologic 3.3S, 600A, 3 pole, 18kA, 600VAC, 80% rated

LGL36600U33X

Main	
Range	PowerPact
Product name	PowerPact L
Device short name	L-Frame
Product or Component Type	Circuit breaker
Device application	Distribution
Complementary	
Line Rated Current	600 A
Number of Poles	3P
Control type	Toggle
Breaking capacity code	G
Breaking capacity	65 kA 240 V AC 50/60 Hz UL 489 35 kA 480 V AC 50/60 Hz UL 489 18 kA 600 V AC 50/60 Hz UL 489 20 kA 250 V DC UL 489 20 kA 500 V DC UL 489
[Ue] rated operational voltage	600 V AC 50/60 Hz IEC 60947-3
Network Frequency	50/60 Hz
[Ics] rated service breaking capacity	65 kA 220/240 V AC 50/60 Hz IEC 60947-2 35 kA 380/440/415 V AC 50/60 Hz IEC 60947-2 18 kA 500/525 V AC 50/60 Hz IEC 60947-2 20 kA 250 V DC IEC 60947-2 20 kA 500 V DC IEC 60947-2
[Uimp] rated impulse withstand voltage	8 kV IEC 60947-2
Trip unit technology	Electronic, standard, Micrologic 3.3 S, LSI
Continuous current rating	80 %
[Ui] rated insulation voltage	750 V IEC 60947-2
Trip unit name	Micrologic 3.3 S
Protection technology	Current limiter
Suitability for isolation	Yes IEC 60947-2
Utilisation category	Category A
AWG gauge	2 x AWG 2/0500 kcmil aluminium/copper

Local signalling	Ready 1 LED green) Alarm 1 LED 90 % Ir orange) Alarm LED 105 % Ir red) Switched off (OFF) 1 trip indicator green)	
Mounting mode	Unit mount lug)	
Mounting Support	Lug	
Electrical connection	Lugs line Lugs load	
Terminal identifier	AL600LS52K3	
Long time pick-up adjustment range	0.251 x ln	
Tightening torque	442.54 lbf.in (50 N.m) 0.110.37 in² (70240 mm²) (AWG 2/0500 kcmil)	
Number of slots	2 auxiliary switch OF plug-in) 1 alarm switch SD plug-in) 1 overcurrent trip switch SDE plug-in) 1 voltage release MN or MX plug-in)	
Power wire stripping length	1.22 in (31 mm) 2.40 in (61 mm)	
Color	Black	
Height	13.39 in (340 mm)	
Width	5.51 in (140 mm)	
Depth	4.33 in (110 mm)	
Net weight	13.67 lb(US) (6.2 kg)	
Communication interface	Modbus Ethernet	
Environment		
Standards	UL CSA NEMA NOM-003-SCFI-2000 IEC 60947-2	
Product certifications	UL CSA NOM	
IP degree of protection	Front cover IP40	
Pollution degree	3 IEC 60947-1	
Ambient Air Temperature for Operation	28158 °F (-270 °C)	
Ambient Air Temperature for Storage	-58185 °F (-5085 °C)	
Operating altitude	< 6561.68 ft (2000 m) without derating 5000 m with derating	
Ordering and shipping de	etails	
Category	01116-L ELEC TRIP UNIT MOUNT BREAKER/SW	
Discount Schedule	DE2	
	705004000074	

GTIN 785901638674	
Nbr. of units in pkg.	1
Package weight(Lbs)	15.00 lb(US) (6.804 kg)
Returnability	Yes
Country of origin	US

Packing Units

Unit Type of Package 1	PCE
Package 1 Height	8.75 in (22.225 cm)
Package 1 width	10.75 in (27.305 cm)
Package 1 Length	19.50 in (49.53 cm)

Offer Sustainability

Sustainable offer status	Green Premium product
California proposition 65	WARNING: This product can expose you to chemicals including: DINP, which is known to the State of California to cause cancer, and DIDP, which is known to the State of California to cause birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov
REACh Regulation	REACh Declaration
EU RoHS Directive	Compliant EU RoHS Declaration
Mercury free	Yes
RoHS exemption information	Yes
China RoHS Regulation	China RoHS declaration Product out of China RoHS scope. Substance declaration for your information.
Environmental Disclosure	Product Environmental Profile
Circularity Profile	End of Life Information
PVC free	Yes

Contractual warranty

Warranty	18 months

Product data sheet

Technical Illustration

LGL36600U33X

Dimensions

All dimensions are approximate.

4

Also see CAD, technical drawings, and technical documentation.

Micrologic™ 3 Trip Units

Micrologic 3 trip units can be used on PowerPact H-, J-, and L-Frame circuit breakers with performance levels D/G/J/L.

They provide:

- standard protection of distribution cables
- indication of:
 - overloads (using LEDs)
 - overload tripping (using the SDx relay module).

Circuit breakers equipped with Micrologic 3 trip units can be used to protect distribution systems supplied by transformers.

Protection

Settings are made using the adjustment rotary switches.

Overloads: Long time protection (Ir)

Inverse time protection against overloads with an adjustable current pick-up Ir set using a rotary switch and an adjustable time delay t_r .

Neutral protection

- On 3-pole L-frame circuit breakers, neutral protection is not possible.
 - On four-pole L-frame circuit breakers, neutral protection may be set using a three-position switch: — switch position 4P 3D: neutral unprotected
 - switch position 4P 3D + N/2: neutral protection at half the value of the phase pick-up, (0.5 x lr)
 - switch position 4P 4D: neutral fully protected at Ir

Indicators

Front indicators

- The green "Ready" LED blinks slowly when the electronic trip unit is ready to provide protection. It indicates the trip unit is operating correctly.
- Orange overload pre-alarm LED: steady on when I > 90% I_r
- Red overload LED: steady on when I > 105% I_r

Remote indicators

An overload trip signal can be remotely checked by installing an SDx relay module inside the circuit breaker. This module receives the signal from the Micrologic electronic trip unit through an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is reclosed. See page 94.

SQUARE D

by **Schneider** Electric

Front Indicators

Alarm

>90

🔵 %lr 🥘

SDX Module

>105

Ratings	I _n at 104°F (40°C) ¹		60 A	100 A	150 A	250 A	400 A	600 A			
	H-frame		Х	Х	Х						
Circuit Breaker	J-frame			1		Х					
	L-frame					Х	Х	X			
Micrologic 3.2 / 3	3.3 trip units										
L Long-time protec	tion										
	l _r		Value depending on sensor rating (In) and setting on rotary switc					switch			
	I _n =60 A	I _r =	15	20	25	30	35	40	45	50	60
Pick-Up (A)	I _n = 100 A	I _r =	35	40	45	50	60	70	80	90	100
Tripping between	I _n = 150 A	I _r =	50	60	70	80	90	100	110	125	150
1.05 and 1.20 Ir	I _n = 250 A	I _r =	70	80	100	125	150	175	200	225	250
	I _n = 400 A	I _r =	125	150	175	200	225	250	300	350	400
	I _n = 600 A	I _r =	200	225	250	300	350	400	450	500	600
	t _r		0.5	1	2	4	8	16			
Time Delay (s)		1.5 x l _r	15	25	50	100	200	400			
Accuracy 0 to -20%		6 x I _r	0.5	1	2	4	8	16			
		7.2 x I _r	0.35	0.7	1.4	2.8	5.5	11			
Thermal memory			20 min	utes befo	ore and	after tripp	bing				
I Instantaneous											
		60 A	1.5	2	3	4	6	8	10	12	15
		100 A	1.5	2	3	4	6	8	10	12	15
	Lv	150 A	1.5	2	3	4	6	8	10	12	15
Pick-up (A)	ı _i ×	250 A	1.5	2	3	4	5	6	8	10	12
accuracy ± 15%		400 A	1.5	2	3	4	5	6	8	10	12
		600 A	1.5	2	3	4	5	6	8	10	11
	Non-tripping time Maximum break time	n-tripping time 10 ms aximum break time 50 ms for I > 1.5 li									
Micrologic 3.2S /	3.3S trip units										
L Long-time protec	tion										
	l.		Value	dependi	na on s	ensor ra	ting (I_)	and se	etting or	rotary	switch

Table 50:	Micrologic™	3 Trip	Unit
-----------	-------------	--------	------

I_n =60 A I_r = I_n = 100 A I_r = Pick-Up (A) Tripping between I_n = 150 A I_r = 1.05 and 1.20 lr I_n = 250 A I_r = I_n = 400 A I_r = $I_{n} = 600 \text{ A}$ $I_r =$ non-adjustable tr Time Delay (s) 1.5 x l_r Accuracy 0 to -20% 6 x I_r 7.2 x l_r Thermal memory 20 minutes before and after tripping S Short-time protection Pick-up (A) 1.5 I_{sd} - I_r x... accuracy ± 10% non-adjustable t_{sd} Time delay (ms) Non-tripping time Maximum break time I Instantaneous 1.5 l_i x l_n Pick-up (A) Non-tripping time 10 ms accuracy ± 15% Maximum break time 50 ms for I > 1.5 li

¹ If the trip units are used in high-temperature environments, the Micrologic trip unit setting must take into account the thermal limitations of the circuit breaker. See the temperature derating information on page 126.

MICROLOGIC[™] ELECTRONIC TRIP UNITS Micrologic[™] 3.3 Long Time Trip Curve 600A L-Frame

The time-current curve information is to be used for application and coordination purposes only.

Notes:

- There is a thermal-imaging effect that can act to shorten the long-time delay. The thermal imaging effect comes into play if a current above the long-time delay pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in a shorter time than normal. The amount of time delay reduction is inverse to the amount of time that has elapsed since the previous overload. Approximately 20 minutes is required between overloads to completely reset thermal-imaging.
- 2. Total clearing times shown include the response times of the trip unit, the circuit breaker opening, and the extinction of the current.

Curves apply from -35°C to +70°C (-31°F to +158°F) ambient temperature.

MICROLOGIC[™] ELECTRONIC TRIP UNITS Micrologic[™] 3.3/3.3S/5.3A or E/6.3A or E Instantaneous Trip Curve 600A L-Frame

The time-current curve information is to be used for application and coordination purposes only.

Notes:

- There is a thermal-imaging effect that can act to shorten the long-time delay. The thermal imaging effect comes into play if a current above the long-time delay pickup value exists for a time and then is cleared by the tripping of a downstream device or the circuit breaker itself. A subsequent overload will cause the circuit breaker to trip in a shorter time than normal. The amount of time delay reduction is inverse to the amount of time that has elapsed since the previous overload. Approximately 20 minutes is required between overloads to completely reset thermal-imaging.
- 2. Total clearing times shown include the response times of the trip unit, the circuit breaker opening, and the extinction of the current.
- 3. In = Maximum dial setting of Ir. 600A L-Frame: In = 600A = Max Ir setting

Curves apply from -35°C to +70°C (-31°F to +158°F) ambient temperature.

Battery Charger-6 Amp

A045D925 60Hz/50Hz

Description

Cummins[®] fully automatic battery chargers are designed to both recharge your batteries, and extend your battery's life in applications where it is stored for long periods of time. This charger can handle poor power quality, exposure to extreme weather and rough handling.

To maximize battery life, a 3-stage charging cycle is implemented. The three charging stages are bulk stage, absorption stage and maintenance stage. During the bulk stage, the charger uses its full amp output to do the heaviest charging, quickly bringing your battery to about 75% of capacity. In the absorption stage, the current slows, adjusting for maximum charging efficiency while it gently tops off the battery to about 98% of capacity.

During the maintenance stage, a lower, closelyregulated, constant voltage is applied to maintain full charge and prevent discharge.

Unlike some "trickle chargers," the float charger won't apply more current than necessary to maintain full charge. Batteries can be connected indefinitely, without harm; in fact, the float charge extends battery life.

Features

Protection – Surge protected to IEEE and EN standards. All models include single pole cartridge type fuses mounted on the printed circuit board to protect against input or output overcurrent.

Lightweight and Silent – Lighter than transformer types, completely silent but still provides full output when overloaded outlets drop AC voltage below the normal 115V.

Monitoring – Status LED indicators are provided to show the condition or charging status of the battery. When the red LED is on, it indicates that the battery is discharged and is recharging at the 'BULK' rate. When both the red and green LEDs are on, the battery is charging at the 'midrange' rate. When the green LED is on, the battery is 90% charged and ready for use.

Construction – Made using epoxy-potted cases making it the ultimate in durability, completely waterproof and able to withstand numerous caustic chemicals and gases, as well as being shockproof.

Fault Indication – The charger senses and indicates the following fault conditions: Defective or damaged cells, under-voltage at the battery, battery drawing more current than charger can replace, loss of power or extremely low AC voltage at the charger, other battery fault conditions and charger failure. **Compatibility –** Works with Sealed Lead Acid (SLA), Absorbed Glass Mat (AGM) and Gel type batteries.

Low Electromagnetic and Radio

Frequency Interference – This product meets FCC class B for conducted and radiated emissions.

Listed – This product is UL listed according to the UL 1236 Standard.

Warranty – This product has a two-year warranty

Specifications

Performance and Physical Characteristics

Output:	Nominal voltage	12 VDC	
	Float voltage – 12 V batteries	13.0-13.6 VDC at 0-2 amps	Aprilian Protected Minut
	Maximum output current	6 A @ 12 VDC nom	
Input:	Voltage AC	115, 208, 240 ±10%, 90-135	
	Frequency	60 Hz ±5%	
Battery:	Maximum battery size	150 Amp Hours	- Sories
	Maximum recharge time	20 hours	
Approximate	net weight	4 lbs. (1.81 Kg)	-
Approximate depth-in(mm	dimensions: height x width x)	2.25 x 6.4 x 3.5 (57 x 162 x 89)	- • •
Ambient tem output	perature operation: At full rated	-40°F to 122 °F (-40 °C to 50 °C)	

Warning: Back feed to a utility system can cause electrocution and/or property damage. Do not connect generator sets to any building electrical system except through an approved device or after building main switch is open.Warning: For professional use only. Must be installed by a qualified service technician. Improper installation presents hazards of electrical shock and improper operation, resulting in severe personal injury and/or property damage.

For more information contact your local Cummins distributor or visit power.cummins.com

Our energy working for you.™

©2022 Cummins Inc. All rights reserved. Cummins is a registered trademark of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins Inc. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. NAAC-5943-EN PDA059R693 (03/22)

SECTION 4 GENERATOR DRAWINGS AND INTERCONNECTS

Cummins Confidential

Confidential and Proprietary and shall not be disclosed to others in hard copy or electronic form, reproduced by any means, or used for any purpose without written consent of Cummins Inc.

Part Number: A055J588 Part Revision: D Part Name: OUTLINE, GENSET Drawing Category: **Detail** State: **Released** Sheet 1 of 3

Cummins Confidential

Confidential and Proprietary and shall not be disclosed to others in hard copy or electronic form, reproduced by any means, or used for any purpose without written consent of Cummins Inc.

Part Number: A055J588 Part Revision: D Part Name: OUTLINE, GENSET Drawing Category: Detail State: Released Sheet 2 of 3

This document (and the information shown thereon) is Confidential and Proprietary and shall not be disclosed to others in hard copy or electronic form, reproduced by any means, or used for any purpose without written consent of Cummins Inc.

Document Generated: 17AUG2022 19:55 GMT

Part Number: A055J592 Part Revision: C Part Name: OUTLINE, GENSET Drawing Category: **Detail** State: **Released** Sheet 1 of 3

This document (and the information shown thereon) is Confidential and Proprietary and shall not be disclosed to others in hard copy or electronic form, reproduced by any means, or used for any purpose without written consent of Cummins Inc.

Document Generated: 17AUG2022 19:55 GMT

Part Number: A055J592 Part Revision: C Part Name: OUTLINE, GENSET Drawing Category: **Detail** State: **Released** Sheet 2 of 3

in hard copy or electronic form, reproduced by any means, or used for any purpose without written consent of Cummins Inc.

GMT Document Generated: 17AUG2022 19:56

Part Name: OUTLINE, GENSET Drawing Category: **Detail** State: **Released** Sheet 1 of 4

in hard copy or electronic form, reproduced by any means, or used for any purpose without written consent of Cummins Inc.

Part Number: A055J590 Part Revision: E Part Name: OUTLINE, GENSET Drawing Category: **Detail** State: **Released** Sheet 3 of 4

Drawing Name: A055V241 Revision: A Part Name: A055V240 Revision: A ECO-164828 Sheet 1 of 3

Regulatory Review and Approval is required prior to changing this item per PGG 1-01-01-116. This item impacts compliance with these External Regulations: UL,CSA

								~ 19	yes 1	1
	ECO-I	81477 E 1	ADD SHEET 6 ZONE (AI) A ZONE (BI)	DD TABLE	RCILLT RDF	AKER	RT MT RT MT	M_TULADHAR M_TULADHAR	8 05NOV18 8 05NOV18	1
^			ACCESSORIES	' TABLE			RT MT	M. TUL ADHAR	05NOV18	1
-2	/U. 0.									
35	0 kcmil.									
00	kcmil C)R (4) I/C	-250 kcmi	Ι.						
	WIRE ST	RIP LENGTH		CB LUC	3 Torqu	E				D
	0.6	5 inch	# 4 - #8 - 3/	#10 50 0 120	lb-in Ib-in	(6,0 (14,0	Nm) Nm)			
	1.0	0 inch	2	25 lb-ii	n (26.0	Nm)				
1	1.0	0 inch	2	25 lb-ii	n (26.0	Nm)				
I	1.0	0 inch	2	50 lb-ii	n (28.0	Nm)				
	1.2	0 inch		442 Ib-	in (50	Nm)				
1	() () 2	.20 inch .40 inch		442 ib-	in (50	Nm)				
	() () 2	.20 inch .40 inch		442 ib-	in (50	Nm)				С
1	(3)	.20 inch		442 Ib-	in (50	Nm)				
										¢
ACC	CESSORIES									¢
ACC A0	CESSORIES									¢
AC(CESSORIES 43X760	· · · · · · · · · · · · · · · · · · ·								¢
ACC A0 5	CESSORIES 43X760 I A043X74	35	_							¢
ACC A0 5 7/N VA VD	CESSORIES 43X760 1 A043X74 C, 48 V/ C,	35 AC, 110 V.	IC IC							÷
ACC A0 5 VA VD 48	CESSORIES 43X760 1 A043X74 1 A043X74 1 A043X74 1 A043X74 1 A043X74 1 A043X74 1 A043X74	35 AC, 110 V.	.c							÷
ACC A0 5 7/N VA 48 110	CESSORIES 43X760 1 A043X74 1 A043X74	35 AC, 110 V. RCTS PER	кс							÷
ACC A0 5 VA VA 48 110 5 5 5	CESSORIES 43X760 4300 4300 4300 4300 4300 4300 4300 43	35 AC, IIO V. ACTS PER PER	IC I							←
ACC A0 3 VA VA VA VD 48 110 OF 5 C 5 C	25507155 433760 433760 4043371 4043371 905 4001 907 401 907 407 907 907 907 907 907 907 907 907 907 9	35 AC, IIO V. ACTS PER PER PER	ıc							÷
	255507855 433760 A043377 C, C, C	35 AC, 110 V. ACTS PER PER PER	.с .с							←
ACC A0 5 7/N VA 48 110 0F 5 C 5 5 C	255507165 4337760 4337760 430433771 C, 48 V, VDC 4 CONT ONTACTS 0014ACT6 1822 E ENTRY 8822 E ENTRY 8822 E ENTRY 8822 E DERAK ABLE 1"	35 AC, IIO V. ACTS PER PER PER ER	.с							←
ACC A0 VA VD 48 10 0F 5 C 5 C 5 C 5 C 5 C 5 C 5 C	CESSORIES 43X760 4043X77 VDC 4 CONT. 0NTACTS 0NTACTS 0NTACTS 0NTACTS E ENTRY D BREAK ABLE 1*	35 AC, IIO V. ACTS PER PER ER	.с .с							÷
ACC A0 3 7 7 7 7 7 7 7 7 7 7 7 7 7	C. 48 V. VDC C. VDC VDC CONTACTS CONTACTS CONTACTS CONTACTS CONTACTS CONTACTS CONTACTS CONTACTS CONTACTS	35 AC, IIO V. ACTS PER PER PER								B
ACC A0 A0 VD VD VD VD VD VD VD VD VD VD VD VD VD	CESSORIES 4 33X760 4 33X760 4 A043X7X VDC VDC 4 CONTACTS 0NTACTS 0NTACTS E ENTRY D BREAKI D BREAKI ABLE 1"	35 AC, 110 V, TCTS PER PER PER ER ER			1	(NCLOS)	RES	10217	D	÷
ACC A00 3 VVA VD 5 5 5 5 5 5 5 5 5 5 6 5 7 10 10 10 10 10 10 10 10 10 10	A043X760 43X760 A043X77 VDC VDC ACONTACTS B222 E BTERAK ABLE 1* MOD CL12 SL25	35 AC, 110 V, ACTS PER PER PER ELS AFFEC 25 M6-C15(560-C15(NC TED TED N6 00 DED		E	INCL OSU OP	RES A	HECTE LY	D	e
ACC A0 VD VD VD VD A0 VD VD A0 VD VD A0 VD VD A0 VD VD A0 A0 VD A0 VD A0 VD A0 A0 VD A0 A0 VD A0 A0 A0 A0 A0 A0 A0 A0 A0 A0	255001155 4337760 43377760 4337760 4337760 4337760 4337760 4337760 4337760 43777777777777777777777777777777777777	35 AC, 110 V, ACTS PER PER PER ELS AFFEC 5 NG-C155 D6D- C20		ITATION		INCLOSU OP	RES +	FFECTE LY		< B
ACC A0 3 7 7 7 7 7 7 7 7 7 7 7 7 7	2ESSORIES 4 33X760 A 43X7760 A 43X77760 A 43X77760 A 43X77760 A 43X77760 A 43X77760 A 43X7777 A 43X77760 A 43X7777 A 43X7777 A 43X7777 A 43X7777 A 43X7777 A 43X7777 A 43X7777 A 43X7777 A 43X77777 A 43X7777777 A 43X777777777777777777777777777777777777	35 AC, IIO V. RCTS PER PER PER ER ER ER TABLE ACTIS PER ACTIS PER ACTIS PER ACTIS PER		ITATION LOS B OR BELC		INCLOSU OP F		FFECTE LY	D	€
ACC A0 3 VVA VVD VVD VVD VVD VVD VVD VVD VVD VVD	Add and a control of the control of	AC, IIO V. ACTS PER PER PER ELS AFFEC S N6-C150 D6D-C20 ATING ATING ATING		ITATION SC 8 OR BELC		INCLOSU OP F Z50A	RES A EN ON OR B	FFECTE LY EFFOR		B
ACC A A0 3 VA VD VD VD VD VD VD VD VD VD VD	C, 48 V, VC C, 48 V, VC VDC A CONTACTS ONTACTS ONTACTS ONTACTS E ENTRY ABLE 1* MOD CTI CTI CTI CTI CTI CTI CTI CTI CTI CTI	AC, IIO V. TABLE PER PER PER PER CIS AFFEC 25 NG-CISC DGD- C20 ATING ATING ATING	CC TED N6 0 D60 L IM 600A 400A	ITATION 205 B 		INCLOSU OP F Z50A	RES A EN ON POS C	PTECTE LY CTOW		B
ACC A00 VA VD VD VD VD VD VD VD VD VD VD	2ESSORIES 43X760 A43X7760 A043X777 VDC 4 CONTACTS ONTACTS ONTACTS ONTACTS CONTACTS ONTACTS ENTROPY A04 A04 CONTACTS CONT	AC, 110 V, ACTS PER PER PER ELS AFFEC 55 NG-C150 DOD- C20 ATING ATING ATING	I TED N6 0 D6D U IM 600A 400A	ITATION DOS B OR BELCO		INCLOSU OP F Z50A	RES A EN ON POS C OR B	FECTE LY ELOW	D	B
ACC A A0 A A0 A0 A A0 A A0 A0 A0 A0 A0 A0 A0 A0 A0 A0	Add and a contracts of the second and a contracts of the second and a contract of the second and a cont	AC, 110 V. TABLE PER PER PER PER FR TABLE CS N6-C150 D6D-C200 ATING ATING ATING		ITATION COS B OR BELC		INCLOSU OP F Z50A	RES A EN ON OR B	FFECTE LY EFOW		< B A
ACC A0 VA VD VD VD VD VD VD VD VD VD VD	C: AB VI C: AB VI C: AB VI C: C VDC VDC A CONTACTS ONTACTS ONTACTS D BREAK ABLE I* MOD C112 C125 PDS ANY R: ANY R: ANY R:	AC, IIO V. ACTS PER PER PER ER TABLE ELS AFFEC D6D- C20 ATING ATING ATING		ITATION OS 8 - OR BELC		OP F 250A	RES A EN ON POS C	PTECTE LY CTOW		< B A
ACC A0 3 VA VA VA VA VA VA VA VA VA VA	2010 2011 2011 2011 2011 2011 2011 2011	355 AC, IIO V. RCTS PER PER PER ER ER ER TABLE ECS AFFEC Sold ACTING ATING ATING ATING ATING	I TED N6 0 D6D TIM 600A 400A	ITATION OS B OR BELC			RES A EN ON OR B		D	B
	2ESSORIES 43X760 43X760 4 043X71 0 00 4 CONT. 4 CONT. 4 CONT. 4 CONT. 4 CONT. 1622 2 ENTRY 0 00 1622 E NTRY 10 00 1622 10 10 10 10	35 AC, IIO V. RCTS PER PER PER PER CTS PER PER OBD-CISC D6D-CISC D6D-CISC D6D-CISC ATING ATING ATING	C TED TED TED N6 0 D60 L IM 600A 400A	ITATION VOS B OR BELC OR BELC STIE COM	E C OUTL I	INCLOSU OP F F 250A	BES A EN ON POS C OR B	HECTE LY HENRY BENERATION	D D EAKER	B

Drawing Name: A055B604 Revision: E Part Name: A055B603 Revision: E ECO-181477 Sheet 1 of 7

Regulatory Review and Approval is required prior to changing this item per PGG 1-01-01-116. This item impacts compliance with these External Regulations: UL,CSA

Regulatory Review and Approval is required prior to changing this item per PGG 1-01-01-116. This item impacts compliance with these External Regulations: UL,CSA

Drawing Name: A055B604 Revision: E Part Name: A055B603 Revision: E ECO-181477 Sheet 5 of 7

	1	2	3	4		5	6	7	8
UNLESS OTHERWISE SPECIFIED, ALL DIMENSIONS ARE IN INCHES	D	CTB CTB1-2 PCC NET A (+) CC CTB2-2 PCC NET B (-) CTB3-2 GROUND B- CTB5-2 POWER B+ CTB12-2 REMOTE START RETL CTB13-2 REMOTE START RETL CTB13-2 REMOTE START INPU CTB17-2 REMOTE E-STOP RE	OWERCOMMAND INTROL PCC2.3 IRN T TURN						D
FRACTIONAL: .XX: .06 .XX: .03 .XXX: .01 ANGLES: .5*	с	CTB19-2 REMOTE E-STOP INF CTB6-4 POWER B+ CTB11-4 POWER B- CTB23-4 POWER B- CTB23-4 LOAD DUMP DRIVER MODBUS RTU TB15-1 RS485 (SHIELD) TB15-3 RS485 (+) TB15-4 RS485 (-)	υT						c
REFERENCES A065N785 A052P382 A054A430									
A065H780 CHP - MO - FIN	В								В
P. BY: KDU 07/28/ D BY: DIFIED BY: SH: N/A									
123 ENGINE FAMILY: PCC2300 OTEC ATS	 ALL INTERCONN TO BE DONE A PCC NET CABL (24 AWG, STRA OTEC PC40 MG (22 AWG, STRA TOTAL NETWOR 	NECT WIRING AND DATA WITH STRANDED WIRE F E: BELDEN 9729. ANDED, SHIELDED, TWIS ODBUS RS485 CABLE: ANDED, SHIELDED, TWIS K LENGTH NOT TO EX	A CABLING IS PER NFPA 110. STED PAIR) BELDEN 9841. STED PAIR) CEED 4000 FT.	4		5	6	7	Α
cummins	CSSNA POWER GE	N	SITE NAME:		CONTACT NAME:	Cus Css	TOMER PROJECT NO: TITLI - NA PROJECT NO: SIZE - SCAI	PCC2.3 CONTROL QSL9QSX15 B DWG NO: PCC2.3 INTER E: NONE DO NOT SCALE PRINT	/ OTEC ATS QSK23 CONNECT REV SHEET 1 OF 1

[TC® Creo® Para	ametric	6					5				4	\checkmark		3		L	2
	SEI	SMIC	INSTALL	ATIONS	NOTES:													
	Ι.	THE IN A (EX.	DESIGN CCORDAN THE EV	OF POST CE WITH ALUATIC	-INSTAL I "ACI 3 DN SERVI	LED ANCH 55.2-07 CE REPOR	HORS IN CO "AND DOCI RT ISSUED	ONCRETE U UMENTED BY THE	JSED FOR TH IN A REPORT INTERNATION	HE COMPONEN F BY A REPL NAL CODE CO	NT ANCHORA JTABLE TES DUNCIL)	GE IS PRE-Q TING AGENCY	UALIFIED FOR	SEISMIC AP	PLICATIONS			
	2.	ANCH FOR	ORS MUS "CBC 20	T BE IN I6" APP	ISTALLED PLICATIO	TO AN E	EMBEDMENT	DEPTH AS	S RECOMMEND)ED IN THE	PRE-QUALI	FICATION TE	ST REPORT AS	DEFINED IN	NOTE I.			
	3.	ANCH "AST	ORS MUS M C33".	t be in	ISTALLEC	IN MIN	IMUM 3000	PSI COMF	PRESSIVE ST	FRENGTH NOF	RMAL WEIGH	T STRUCTURA	L CONCRETE. (CONCRETE AG	GREGATE MUST	COMPLY W	/ITH	
	4.	ANCH	ORS MUS	t be in	ISTALLEC	TO THE	TORQUE SI	PECIFICA	TION AS REC	COMMENDED E	BY THE ANC	HOR MANUFAC	TURER.					
_	5.	ANCH	ORS MUS	t be in	ISTALLED	IN LOC/	ATIONS SPI	ECIFIED (ON THIS INS	STALLATION	DRAWING.							
	6.	WASH WASH	ERS MUS ERS MUS	T BE IN T BE TY	ISTALLED PE A OF	AT EACH B PLAIM	H ANCHOR I N WASHERS	LOCATION MEETING	BETWEEN TH ASME BI8.2	HE ANCHOR H 21.1-2009.	HEAD AND E WASHER SI	QUIPMENT FO ZE TO MATCH	R TENSION LOA ANCHOR DIAME	AD DISTRIBU Eter.	TION.			
	7.	CONC	RETE FL	oor sla	B AND C	ONCRETE	HOUSEKEEI	PING PADS	S MUST BE D	DESIGNED FO	DR SEISMIC	APPLICATIO	NS IN ACCORDA	ANCE WITH "	ACI 318-11".			
	8.	ALL A MI	HOUSEKE NIMUM O	EPING P FI.5X	AD THIC THE ANC	KNESSES HOR EMBE	MUST BE I EDMENT DEI	DESIGNED PTH, WHIC	IN ACCORDA CHEVER IS L	ANCE WITH 1 ARGEST (UN	THE PRE-QU NLESS NOTE	ALIFICATION D OTHERWISE	TEST REPORT).	AS DEFINED	IN NOTE I C)R		
	9.	ALL PER	HOUSEKE "ACI 31	EPING P 8-II" A	ADS MUS ND AS A	T BE DOV PPROVED	NELLED OR BY THE S	CAST IN ⁻ TRUCTURAL	TO THE BUIL L ENGINEER	DING STRUC OF RECORD.	CTURAL FLO	OR SLAB AND	DESIGNED FOR	R SEISMIC A	PPLICATION			
	ΙΟ.	FLOO THAT TO T	R MOUNT IS SEI HE FLOO	ED EQUI SMICALL R.	PMENT (Y DESIG	WITH OR NED AND	WITHOUT APPROVED	A HOUSEKE BY THE E	EEPING PAD) ENGINEER OF	MUST BE I RECORD TO	INSTALLED D RESIST A	TO A STEEL LL LOADS FR	REINFORCED S OM EQUIPMENT	TRUCTURAL C BEING ANCH	ONCRETE FLOC ORED	DR		
	.	COOR	DINATE	REINFOR	CEMENT	OF SUPPO	ORT STRUC	TURE WITH	H EQUIPMENT	FANCHOR LC	DCATIONS.							
\rightarrow	12.	ATTA BY T	CHING S HE STRU	EISMIC CTURAL	CERTIFI ENGINEE	ED EQUIF R OF REC	PMENT TO I CORD IS PI	FLOOR OTH ROHIBITEI	HER THAN TH D.	HOSE DESIGN	NED TO ACC	EPT THE SEI	SMIC LOADS FF	ROM CERTIFI	ED EQUIPMENT			
	13.	INST	ALLATIO	N ONTO	A STEEL	ROOF S	TRUCTURE (OR MANUF/	ACTURED STE	EL CURB SH	HALL BE CO	ORDINATED W	ITH THE STRUC	CTURAL ENGI	NEER OF RECC	ORD.		
в	4.	CONN CONN FLEX THE DURI	ECTIONS ECTIONS IBLE AT FLEXIBL NG AND	TO THE , ARE T TACHMEN E ATTAC AFTER A	EQUIPN HERESF ITSMUST HMENTM SEISMI	ENT, INC ONSIBIL BE USEC UST PROV C EVENT	CLUDING BI ITY OF THI D FOR SEI: VIDE FOR I	UT NOT L E INSTALI SMIC CONI ENOUGH RE	IMITED TO C LING CONTRA NECTIONS TC ELATIVE DIS	CONDUIT, WI ACTOR AND E DISOLATED SPLACEMENT	IRING FROM BEYOND THE COMPONENT TO REMAIN	CABLE TRAY SCOPE OF T S OR ISOLAT CONNECTED	S, OTHER ELEC HIS DOCUMENT ED EQUIPMENT TO THE EQUIPM	CTRICAL SER MENT AND FU	VICES OR OTH NCTIONAL	IE R		
	Ι5.	REFE	r to ge	NSET OL	ITLINE D	RAWINGS	FOR WEIG	HT, CG AN	ND CONFIGUR	RATION SPEC	CIFICS.							
_																		
A																		
																	LESS OTHERWISE SPECIFIED, AI IMENSIONS ARE IN MILLIMETER	LL SIN TO NON S DO NOT S 15/-0.08 20/-0.0
																ANG TOL:	0.8 ↓ 0.00-9,99+0 0.38 ↓ 10.00-17.49+0 ± 1.0° SCALE: /	25/-0.13 30/-0.13
_			6					5				4	\uparrow		3			2

										1					_
RE ECO-I	L NO 65950	ltr A	NO	REVISION PRODUCT	ION R	ELEASE					DWIN AGJ	ckd AG J	APVD M_WICKMANN	DATE 07NOV16	
															D
															с
															$ \leftarrow$
															Ì
															в
															A
	DWN A	- J0	HNS	ON		(TILLE	7		Cuw	MINS	Powe	RG	ENERATIO	N	1
	СКD Д АРVD [JO 1_WI	HNS CKM	ON ANN	-	Grove		NS	TAI	LAI	101	١, (GENSE	T	1
SNTIAL -	DATE C	7 NO	VI6	IRST USED ON		SITE CC	DE SE	ISM Ģ T	IC RE	OUIRI	EMENTS	5		SHEET DWG	
CUMMINS TION GROUP	OF DIMENS TOLERANCI ASME YI	NG, SEI 4 5M - I	AND 6 994	ARRÖW		PGF		ו ל	A 0 5	6M5	4			OF 4 A	J
				- I						1					

	PTC® Creo® Parametric	6		5		4	\downarrow	3					
D				GRADE	MOUNTED GEI	NERATOR SET	ſS						
		CUMMINS		ATTACHMENT TO CONCRETE									
		GENSET MODEL	CONFIGURATION	EVALUATION PARAMETERS	CONCRETE ANCHORS	ANCHOR EMBEDMENT	ANCHOR SPACING	DISTANCE TO NEAREST EDGE	CONCRETE SLAB THICKNESS				
_		C125 N6 C150 N6	GENERATOR SET WITH OR WITHOUT ENCLOSURE	CBC 2016/1BC 2015 Sds <= 2.5 1p <= 1.5 ap/Rp <= 2.5/2.0 z/h = 1.0 Ω = 2.5			SEE NOTE						

c

B

A

NOTE: TYPE OF ANCHOR, ANCHOR ATTACHMENT SPECIFICS AND MINIMUM SLAB THICKNESS TO BE DESIGNED BY ENGINEER OF RECORD.

GF	GRADE/ROOF MOUNTED GENERATOR SETS										
CUMMINS		ATTACHMENT TO STEEL									
GENSET MODEL	CONFIGURATION	EVALUATION PARAMETERS	STEEL BOLTS								
CI25 N6 <mark>CI50 N6</mark>	GENERATOR SET WITH OR WITHOUT ENCLOSURE	CBC 2016/1BC 2015 Sds <= 2.5 1p <= 1.5 ap/Rp <= 2.5/2.0 z/h <= 1.0	(QTY 6) 5/8" DIAMETER ASTM A325N OR A490 BOLTS WITH WASHERS THROUGH THE BASE RAIL MOUNTING HOLES.								

Regulatory Review and Approval is required prior to changing this item per PGG 1-01-01-116. This item impacts compliance with these External Regulations: IBC,OSHPD

2					I					1						
	REL ECO-I	. NO 65950	ltr A	NO 	REVISION PRODUCT	ION F	RELEASE				DWN AG	ckd J AG J	APVD M_WICKMA	IN 07	DATE NOVI6	
											_					
																D
																_
																С
																\leftarrow
																в
																_
																A
NONE		DWN Å	_ J0	HNS	ON		Tullie		C	UMMINS	Pow	ER (Generati	ON		
	<u>- rruni</u>	CKD A	1_ U I	h N S C K M	ON ANN		Gun		IST	ALLA	TIO	Ν,(GENSE	T		
		DATE C			RST USED ON		SITE COD	E SEI	SMIC	REQUI	REMENT	S		SHEE	T DWG REV	
PROPERT OF CL POWER GENERATIO	N GROUP	TOLERANCI ASME YI	NG, SEE 4.5M-1	94	AKROW	1	76F	D	A	U 3 6 M 1	541			2 OF	4 Â	

Regulatory Review and Approval is required prior to changing this item per PGG 1-01-01-116. This item impacts compliance with these External Regulations: IBC,OSHPD

Regulatory Review and Approval is required prior to changing this item per PGG 1-01-01-116. This item impacts compliance with these External Regulations: IBC,OSHPD

	REL	NO	LTR	NO	REVISION						1	DWN	CKD	APVD	DATE	
E	CO-16	5950	A		PRODU	CTION	RELEAS	SE				AG J	AG J	M_WICKMAN	N 07NOV	6
												_				
D '		т ^		_												
۲N	ЧEN	15	n I I	J												
JGI	H															
W	ITH	WA	SH	ER												
																₹
RB. Al	/FR FN	АМЕ С IN	A	S: R(SPEC De r	IFIE ECOE	ED B	Y								
٦L	LN	0110	LL	11 1		LUUI	(D									
																E
																-
					<u>A</u>		1									
LE P	rint	DWN A	+_JC) HNS) HNS	ON		Gunus	ilitie -		Cu	MMINS	Powe	R	ENERATIO	N	
\square		APVD N			ANN		SITE		INS SELS	STA MIC R	_ L A T EQUIRF	I OI	∖,(s	GENSE	Т	
	L -	FOR INTER OF DIMENT	RPRETAT SIONING		IRST USED O	N W	PG	iF	DIIG SIZE	A 0 4	56M5	41			SHEET D A OF A	NG V
	MOUT	ASME YI	4.5M-1	994		/ 11	<u> </u>				1				<u> </u>	<u>.</u>

SECTION 5 WARRANTY

Warranty Statement

Global Commercial Warranty Statement

Generator Set

Limited Warranty

Commercial Generating Set

This limited warranty applies to all Cummins Power Generation® branded commercial generating sets and associated accessories (hereinafter referred to as "Product").

This warranty covers any failures of the Product, under normal use and service, which result from a defect in material or factory workmanship.

Warranty Period:

The warranty start date[†] is the date of initial start up, first rental, demonstration or 18 months after factory ship date, whichever is sooner. See table for details.

Continuous Power (COP) is defined as being the maximum power which the generating set is capable of delivering continuously whilst supplying a constant electrical load when operated for an unlimited number of hours per year. No overload capability is available for this rating.

Prime Power (PRP) is defined as being the maximum power which a generating set is capable of delivering continuously whilst supplying a variable electrical load when operated for an unlimited number of hours per year. The permissible average power output over 24 hours of operation shall not exceed 70% of the PRP. For applications requiring permissible average output higher than stated, a COP rating should be used.

Limited-Time Running Power (LTP) is defined as the maximum power available, under the agreed operating conditions, for which the generating set is capable of delivering for up to 500 hours of operation per year.

Emergency Standby Power (ESP) is defined as the maximum power available during a variable electrical power sequence, under the stated operating conditions, for which a generating set is capable of delivering in the event of a utility power outage or under test conditions for up to 500 hours of operation per year. The permissible average power output over 24 hours of operation shall not exceed 70% of the ESP.

Environmental Protection Agency – Stationary Emergency (EPA-SE) is defined as being the maximum power available during a variable electrical power sequence, under the stated operating conditions, for which a generator set is capable of delivering in the event of a utility power outage or under test conditions and used in strict accordance with the EPA NSPS for stationary engines, 40 CFR part 60, subparts IIII and JJJJ, where a reliable utility must be present. The permissible average power output over 24 hours of operation shall not exceed 70% of the EPA-SE.

Data Center Continuous (DCC) is defined as the maximum power which the generator is capable of delivering continuously to a constant or varying electrical load for unlimited hours in a data center application.

		arsmar
Rating	Months	Max. Hours
COP	12	Unlimited
PRP	12	Unlimited
LTP	12	500 hrs
ESP	24	1000 hrs
EPA-SE	24	Unlimited
DCC	24	Unlimited

Base Warranty Coverage Duration (Whichever occurs first)

⁺ Warranty start date for designated rental and oil and gas model Products is determined to be date of receipt of Product by the end customer.

Cummins Power Generation® Responsibilities:

In the event of a failure of the Product during the warranty period due to defects in material or workmanship, Cummins Power Generation® will only be responsible for the following costs:

- All parts and labor required to repair the Product.
- Reasonable travel expenses to and from the Product site location.
- Maintenance items that are contaminated or damaged by a warrantable failure.

Owner Responsibilities:

The owner will be responsible for the following:

- Notifying Cummins Power Generation® distributor or dealer within 30 days of the discovery of failure.
- Installing, operating, commissioning and maintaining the Product in accordance with Cummins Power Generation®'s published policies and guidelines.
- Providing evidence for date of commissioning.
- Providing sufficient access to and reasonable ability to remove the Product from the installation in the event of a warrantable failure.
- Incremental costs and expenses associated with Product removal and reinstallation resulting from non-standard installations.
- Costs associated with rental of generating sets used to replace the Product being repaired.
- Costs associated with labor overtime and premium shipping requested by the owner.
- All downtime expenses, fines, all applicable taxes, and other losses resulting from a warrantable failure.

Limitations:

This limited warranty does not cover Product failures resulting from:

- Inappropriate use relative to designated power rating.
- Inappropriate use relative to application guidelines.
- Inappropriate use of an EPA-SE application generator set relative to EPA's standards.
- Normal wear and tear.
- Improper and/or unauthorized installation.
- Negligence, accidents or misuse.
- Lack of maintenance or unauthorized repair.
- Noncompliance with any Cummins Power Generation® published guideline or policy.
- Use of improper or contaminated fuels, coolants or lubricants.
- Improper storage before and after commissioning.
- Owner's delay in making Product available after notification of potential Product problem.
- Replacement parts and accessories not authorized by Cummins Power Generation®.
- Use of Battle Short Mode.
- Owner or operator abuse or neglect such as: operation without adequate coolant or lubricants; overfueling; overspeeding; lack of maintenance to lubricating, cooling or air intake systems; late servicing and maintenance; improper storage, starting, warm-up, run-in or shutdown practices, or for progressive damage resulting from a defective shutdown or warning device.

 Damage to parts, fixtures, housings, attachments and accessory items that are not part of the generating set.

This limited warranty does not cover costs resulting from:

- Difficulty in gaining access to the Product.
- Damage to customer property.

A "Data center" is defined as a dedicated facility that house computers and associated equipment for data storage and data handling.

Reliable utility is defined as utility power without routine or regularly scheduled black-outs.

Please contact your local Cummins Power Generation® Distributor for clarification concerning these limitations.

CUMMINS POWER GENERATION® RIGHT TO FAILED COMPONENTS:

Failed components claimed under warranty remain the property of Cummins Power Generation®. Cummins Power Generation® has the right to reclaim any failed component that has been replaced under warranty.

Extended Warranty:

Cummins Power Generation® offers several levels of Extended Warranty Coverage. Please contact your local Cummins Power Generation ® Distributor for details.

www.power.cummins.com

THE WARRANTIES SET FORTH HEREIN ARE THE SOLE WARRANTIES MADE BY CUMMINS POWER GENERATION ® IN REGARD TO THE PRODUCT. CUMMINS POWER GENERATION® MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, OR OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT IS CUMMINS POWER GENERATION® LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES.

This limited warranty shall be enforced to the maximum extent permitted by applicable law. This limited warranty gives the owner specific rights that may vary from state to state or from jurisdiction to jurisdiction.

Product Model Number:	
Product Serial Number:	
Date in Service:	

Warranty Statement

Transfer Switch Extended Warranty

Limited 5 Year Comprehensive Extended Warranty – G007

Transfer Switch and Paralleling Systems

When purchased, this limited extended warranty applies to all Cummins Power Generation® branded Transfer Switches, Paralleling Systems and associated accessories (hereinafter referred to as "Product").

This warranty covers any failures of the Product, under normal use and service, which result from a defect in material or factory workmanship.

Warranty Period:

The warranty start date is the date of initial start up, first rental, demonstration or 18 months after factory ship date, whichever is sooner. The coverage duration is 5 years from warranty start date.

Cummins Power Generation® Responsibilities:

In the event of a failure of the Product during the extended warranty period due to defects in material or workmanship, Cummins Power Generation® will only be responsible for the following costs:

- All parts and labor required to repair the Product.
- Reasonable travel expenses to and from the Product site location.
- Maintenance items that are contaminated or damaged by a warrantable failure.

Owner Responsibilities:

The owner will be responsible for the following:

- Notifying Cummins Power Generation® distributor or dealer within 30 days of the discovery of failure.
- Installing, operating, commissioning and maintaining the Product in accordance with Cummins Power Generation®'s published policies and guidelines.
- Providing evidence for date of commissioning.
- Providing sufficient access to and reasonable ability to remove the Product from the installation in the event of a warrantable failure.

In addition, the owner will be responsible for:

- Incremental costs and expenses associated with Product removal and reinstallation resulting from non-standard installations.
- Costs associated with rental of generating sets used to replace the Product being repaired.
- Costs associated with labor overtime and premium shipping requested by the owner.
- All downtime expenses, fines, all applicable taxes, and other losses resulting from a warrantable failure.

Limitations:

This limited extended warranty does not cover Product failures resulting from:

- Inappropriate use relative to designated power rating.
- Inappropriate use relative to application guidelines.
- Failures due to normal wear, corrosion, varnished fuel system parts, lack of reasonable and necessary maintenance, unauthorized modifications and/or repair, and use of add-on or modified parts.
- Improper and/or unauthorized installation.
- Owner's or operator's negligence, accidents or misuse.
- Noncompliance with any Cummins Power Generation® published guideline or policy.
- Improper storage before and after commissioning.
- Owner's delay in making Product available after notification of potential Product problem.
 Limitations Continued:
 - Replacement parts and accessories not authorized by Cummins Power Generation[®].
 - Use of Battle Short Mode
 - Owner or operator abuse or neglect such as: operation without adequate coolant or

lubricants; overfueling; overspeeding; lack of maintenance to lubricating, cooling or air intake systems; late servicing and maintenance; improper storage, starting, warm-up, run-in or shutdown practices, or for progressive damage resulting from a defective shutdown or warning device.

 Damage to parts, fixtures, housings, attachments and accessory items that are not part of the generating set.

This limited extended warranty does not cover costs resulting from:

- Difficulty in gaining access to the Product.
- Damage to customer property.
- Repair of cosmetic damage to enclosures.

www.cumminspower.com

CUMMINS POWER GENERATION® RIGHT TO FAILED COMPONENTS:

Failed components claimed under warranty remain the property of Cummins Power Generation®. Cummins Power Generation® has the right to reclaim any failed component that has been replaced under warranty.

THE WARRANTIES SET FORTH HEREIN ARE THE SOLE WARRANTIES MADE BY CUMMINS POWER GENERATION ® IN REGARD TO THE PRODUCT. CUMMINS POWER GENERATION® MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, OR OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT IS CUMMINS POWER GENERATION® LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES.

This limited extended warranty shall be enforced to the maximum extent permitted by applicable law. This limited extended warranty gives the owner specific rights that may vary from state to state or from jurisdiction to jurisdiction.

Product Model Number:_____

Product Serial Number:_____

Date in Service:_____