GILLETTE GENERATORS

LIQUID COOLED DIESEL ENGINE GENERATOR SET

Model		STANDBY PRIM	
Model	HZ	130°C RISE	105°C RISE
T4D-5500-60 HERTZ	60	550	500

All generator sets are USA prototype built and thoroughly tested. Production models are USA factory built and 100% load tested.

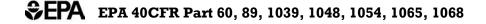
UL1446, UL508, UL142, UL498

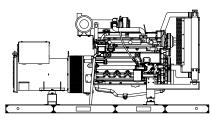
NFPA 110, 99, 70, 37

All generator sets meet NFPA-110 Level 1, when equipped with the necessary accessories and installed per NFPA standards.

NEC 700, 701, 702, 708

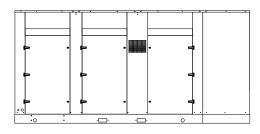
ANSI


NEMA ICS10, MG1, ICS6, AB1


ANSI C62.41, 27, 59, 32, 480, 40Q, 81U, 360-05

SCE ASCE 7-05 & 7-10

All generator sets meet 180 MPH rating.



60 HZ MODEL

T4D-5500

"OPEN" GEN-SET

There is no enclosure, so gen-set must be placed within a weather protected area, uninhabited by humans or animals, with proper ventilation. Silencer not supplied, as installation requirements are not known. However, this item is available as optional equipment.

"LEVEL 2" HOUSED GEN-SET

Full aluminum weather protection and superior sound attenuation for specific low noise applications. Critical grade muffler is standard.

GENERATOR	VOLT	AGE	РН	HZ	130°C RISE STA	ANDBY RATING	105°C RISE PI	RIME RATING
MODEL	L-N	L-L			KW/KVA	AMP	KW/KVA	AMP
T4D-5500-3-2	120	208	3	60	550/688	1911	500/625	1737
T4D-5500-3-3	120	240	3	60	550/688	1656	500/625	1505
T4D-5500-3-4	277	480	3	60	550/688	828	500/625	753
T4D-5500-3-5	127	220	3	60	550/688	1806	500/625	1642
T4D-5500-3-16	346	600	3	60	550/688	662	500/625	602

GENERATOR RATINGS

RATINGS: All three phase gen-sets are 12 lead windings, rated at .8 power factor. 130° C "STANDBY RATINGS" are strictly for gen-sets that are used for back-up emergency power to a failed normal utility power source. This standby rating allows varying loads, with no overload capability, for the entire duration of utility power outage. 105° C "PRIME RATINGS" are strictly for gen-sets that provide the prime source of electric power, where normal utility power is unavailable or unreliable. A 10% overload is allowed for a total of 1 hour, within every 12 hours of operation, on every PRIME RATED systems. All gen-set power ratings are based on temperature rise measured by resistance method as defined by MIL-STD 705C and IEEE STD 115, METHOD 6.4.4. All generators have class H (180°C) insulation system on both rotor and stator windings. All factory tests and KW/KVA charts shown above are based 130°C (standby), and 105°C (prime) R/R winding temperature, within a maximum 40°C ambient condition. Generators operated at standby power ratings must not exceed the temperature rise limitation for class H insulation system, as specified in NEMA MG1-22.40. Specifications & ratings are subject to change without prior notice.

APPLICATION & ENGINEERING DATA FOR MODEL T4D-5500-60 HZ

GENERATOR SPECIFICATIONS

Manufacturer	Stamford Generators
	311, 4 Pole, 12 Lead, Three Phase
V 1	Pole, 12 Lead, 600V, Three Phase
	Brushless, shunt excited
	Solid State, HZ/Volts
	¹ /2%, No load to full load
Frequency	Field convertible, 60 HZ to 50 HZ
	% (1/2 cycle, no load to full load)
Unbalanced Load Capability	
One Step Load Acceptance	100% of nameplate rating
	nClass H, 180°C
Temperature Rise105°	C R/R, prime rating @ 40°C amb.
-	tage Dip (208-240V)1500 kVA
e	tage Dip (480V-600V) 2300 kVA
•	
Coupling	Direct flexible disc.
Total Harmonic Distortion	Max 31/2% (MIL-STD705B)
	Max 5% (MIL-STD 405B)
	Self ventilating and drip-proof
	24 Months from start-up date or
-	1000 hours use, first to occur.

GENERATOR FEATURES

- World Renown Stamford Electric Generator having UL-1446 certification.
- Full generator protection with **Deep Sea 7420** controller, having UL-508 certification.
- Automatic voltage regulator with over-excitation, underfrequency compensation, under-speed protection, and EMI filtering. Entire solid-state board is encapsulated for moisture protection.
- Generator power ratings are based on temperature rise, measured by resistance method, as defined in MIL-STD 705C and IEEE STD 115, Method 6.4.4.
- Power ratings will not exceed temperature rise limitation for class H insulation as per NEMA MG1-22.40.
- Insulation resistance to ground, exceeds 1.5 meg-ohm.
- Stator receives 2000 V. hi-potential test on main windings, and rotor windings receive a 1500 V. hi-potential test, as per MIL-STD 705B.
- Full amortisseur windings with UL-1446 certification.
- Complete engine-generator torsional acceptance, confirmed during initial prototype testing.
- Full load testing on all engine-generator sets, before shipping.

ENGINE SPECIFICATIONS AND APPLICATIONS DATA

ENGINE

ManufacturerVOLVO-PENTA
Model and Type TWD1672GE, 4 cycle, liquid Cooled
Aspiration Turbo After Cooler, H2O to Air
Charged Air Cooled System
Cylinder Arrangement
Displacement Cu. In. (Liters)
Bore & Stroke in (Cm)
Compression Ratio
Main Bearings Tin Overlay with Babbit Backing
Cylinder HeadCast Iron with overhead Cam
PistonsAluminum Alloy with Graphite Coating
CrankshaftInduction Hardened, Heat Treated Forged
Valves Heat Treated and Hardened Exhaust Valve
GovernorElectronic, EMS 2.2
Frequency Regulation± 1/4%
Air CleanerDry, Replaceable Cartridge
Engine Speed
Max Power, bhp (kwm) Standby
BMEP: psi (MPa) Standby
Ltd. Warranty Period 2 Year or 1000 hrs, first to occur

FUEL SYSTEM

Туре	. Diesel Fuel Oil (ASTM No. 2-D)
Combustion System	Direct Injection
Fuel Injection Pump	Electronic, Delphi E3
24 VDC Coolant heaters	Optional Equipment
Fuel Filter	Yes with Water Separator

FUEL CONSUMPTION

GAL/HR (LITER/HR)	STANDBY	PRIME
100% LOAD	39.9 (151)	35.9 (136)
75% LOAD	28.8 (109)	26.0 (98.0)
50% LOAD	19.1 (72.0)	17.5 (66.0)

OIL SYSTEM

Туре	Full Pressure
Oil Pan Capacity qt. (L)	
Oil Pan Cap. W/ filter qt. (L)	
Oil Filter	3, Replaceable Cartridge type

ELECTRICAL SYSTEM

Recommended battery to $-18^{\circ}C(0^{\circ} \text{ F})$:(2) 12 VDC, BCI# 31, Max. Dimensions: 14"lg x 6 3/4" wi x 10" hi, with standard round posts. Min output 1000 CCA. Battery tray (max. dim. at 15"lg x 7"wi). This model has (2) battery trays, (2) hold down straps, (2) sets of battery cables, and (1) battery charger. Installation of (2) 12VDC starting batteries connected in series for 24VDC output is required, with possible higher AMP/HR rating, as described above, if the normal environment temperature averages $-13^{\circ} \text{ F} (-25^{\circ}\text{C})$ or cooler.

CERTIFICATIONS

All engines are EPA emissions certified. All non-emergency stationary diesel engines are Tier IV Final compliant.

APPLICATION & ENGINEERING DATA FOR MODEL T4D-5500-60 HZ

COOLING SYSTEM

Type of System Air to Air, Charged Air Cooler
Coolant PumpPre-lubricated, self-sealing
Cooling Fan TypePusher
Fan Diameter inches (cm)
Fan drive ratio1.04:1
Ambient Capacity of Radiator °F (°C)131 (55)
Engine Jacket Coolant Capacity gal. (L)
Radiator Coolant Capacity gal. (L)
Water Pump Capacity gpm (L/min)122 (462)
Heat Reject Coolant: Btu/min12,682
Air to Air Heat Reject, BTU/min11,715
Heat Radiated to Ambient, BTU/min4,253
Low Radiator Coolant Level ShutdownStandard
Note: Coolant temp. shut-down switch setting at 228°F (109°C) with
50/50 (water/antifreeze) mix.

COOLING AIR REQUIREMENTS

Combustion Air cfm (m ³ /min)	1,646 (46.6)
Max Air Intake Restrictions:	
Clean Air Cleaner, KPA (psi)	
Radiator Cooling Air, SCFM (m ³ /min)	29,894 (846)

EXHAUST SYSTEM

Exhaust Outlet Size	
Max. Back Pressure in KPA (in. H2O)	
Exhaust Flow, at rated KW, CFM (m3/min)	
Exhaust Temp, (Stack) °F (°C)	932 (500)

SOUND LEVELS MEASURED IN dB(A)

	Open	Level 2
	Set	Encl.
Level 2, Critical Silencer		
Level 3, Hospital Silencer		78

Note: Open sets (no enclosure) have optional silencer system choices due to unknown job-site applications. Level 2 enclosure has installed critical silencer with upgrade to Level 3 hospital silencer. Sound tests are averaged from several test points and taken at 23 ft. (7 m) from source of noise at normal operation.

DERATE GENERATOR FOR ALTITUDE

3% per 1000 ft. (305m) above 3000 ft. (914m) from sea level

DERATE GENERATOR FOR TEMPERATURE

2% per 10°F (5.6°C) above 104°F (40°C)

DIMENSIONS AND WEIGHTS

	Open	Level 2
	Set	Enclosure
Length in (cm)	152 (368)	
Width in (cm)		
Height in (cm)		
3 Ø Net Weight lbs (kg)	9625 (4366)	
3 Ø Ship Weight lbs (kg)	10025 (4547)	

DEEP SEA 7420 DIGITAL MICROPROCESSOR CONTROLLER

Deep Sea 7420

The "**7420**" controller is an auto start mains (utility) failure module for single gen-set applications. This controller includes a backlit LCD display which <u>continuously</u> displays the status of the engine and generator at all times.

The "**7420**" controller will also monitor speed, frequency, voltage, current, oil pressure, coolant temp., and fuel levels. These modules have been designed to display warning and shut down status. It also includes: (11) configurable inputs • (8) configurable outputs • voltage monitoring • mains (utility) failure detection • (250) event logs • configurable timers • automatic shutdown or warning during fault detection • remote start (on load) • engine preheat • advanced metering capability • hour meter • text LCD displays • protected solid state outputs • test buttons for: stop/reset • manual mode • auto mode • lamp test • start button • power monitoring (kWh, kVAr, kVAh, kVArh)

This controller includes expansion features including RS232, RS484 (using MODBUS-RTU/TCP), direct USB connection with PC, expansion optioned using DSENet for remote annunciation and remote relay interfacing for a distance of up to 3300FT. The controller software is freely downloadable from the internet and allows monitoring with direct USB cable, LAN, or by internet via the built in web interface.

Further expansion is available by adding the optional "WebNet" gateway interface module. This device will allow comprehensive monitoring of the generator via the cloud including identification, location, and status. Some advantages of this module include: reduced site visits and maintenance costs • remote fuel management • fault analysis • asset tracking • automatic system alerts • maximized system up-time.

STANDARD FEATURES FOR MODEL T4D-5500-60 HZ

STANDARD FEATURES

CONTROL PANEL:

Deep Sea 7420 digital microprocessor with logic allows programming in the field. Controller has:

- STOP-MANUAL-AUTO modes and automatic engine shutdowns, signaled by full text LCD indicators:
- Low oil pressure
- Engine fail to startEngine over speed
- High engine tempLow Radiator Level
- Engine under speed
- Three auxiliary alarms Over & under voltage
- Battery fail alarm

Also included is tamper-proof engine hour meter

ENGINE:

Fuel filter • Full flow Oil filter • Air filter • Fuel pump • Oil pump • Solenoid type starter motor • Hi-temp radiator • Jacket water pump • Thermostat • Pusher fan and guard • Exhaust manifold • Electronic Governor • 24 VDC battery charging alternator • Flexible fuel and exhaust connectors • Vibration isolators • Open coolant recovery system with 50/50 water to anti-freeze mixture • flexible oil & radiator hose • Shut-down sensors for low oil pressure, high coolant temp., low coolant level, high ambient temp.

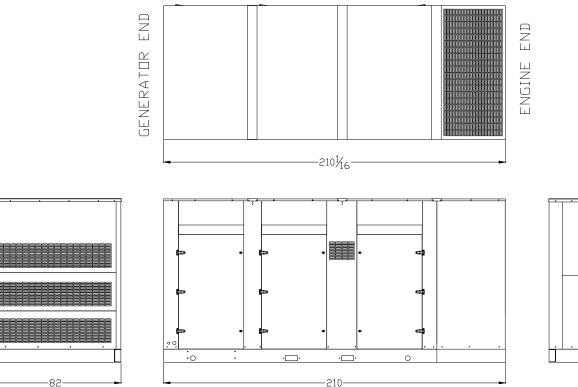
Design & specifications subject to change without prior notice. Dimensions shown are approximate. Contact Gillette for certified drawings. DO NOT USE DIMENSIONS FOR INSTALLATION PURPOSES.

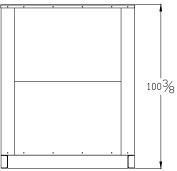
AC GENERATOR SYSTEM:

AC generator • Shunt excited • Brushless design • Circuit Breaker installed and wired to gen-set • Direct connection to engine with flex disc • Class H, 180°C insulation • Self ventilated • Drip proof construction • UL Certified

VOLTAGE REGULATOR:

1% Voltage regulation • EMI filter • Under-speed protection • Over-excitation protection • total encapsulation


DC ELECTRICAL SYSTEM:


Battery trays • Battery cables • Battery hold down straps • 3-stage battery charger with float, absorption, & bulk automatic charge stages

WEATHER / SOUNDPROOF ALUMINUM HOUSING:

Corrosion Resistant Protection consisting of:

- (9) Heated and Agitated Wash Stages
- Zinc Phosphate Etching-Coating Stage
- Final Baked on Enamel Powder Coat
- 18/8 Stainless Steel Hardware

TWD1672-1673GE

615 kW (836 hp) & 685 (932) at 1800 rpm, acc. to ISO 3046 US EPA & CARB Tier 4 Final

A powerful, reliable and economical generating set diesel engine range built on the proven Volvo Group in-line six concept.

Powerful package

High power density in a compact package with dual stage turbo charging. Excellent load step performance according to ISO 8528-5.

Low cost of ownership & operation

World class fuel efficiency in combination with a proven and reliable engine and exhaust aftertreatment system design. The exhaust aftertreatment system consists of only SCR, without EGR, DOC or DPF. Minimal of components are used and no downtime for regeneration or decreased service intervals. No EGR also results in less heat rejection, leading to excellent power density and improved fuel economy.

Compact & simple installation

SCR technology selected by Volvo Group does not increase the amount of cooling capacity needed. In combination with the compact engine design, installation is easy with minor impact on existing installation layout. Installation guidelines as well as drawings and CAD models are easy to access.

Durability & low noise

Volvo Group's long experience with SCR systems in combination with base engine development reduces risk of downtime. Well-balanced to produce smooth and vibration free operation with low noise.

Low exhaust emission

Efficient injection as well as robust engine design in combination with SCR technology contributes to excellent combustion and low fuel consumption.

Easy service & maintenance

Easily accessible service and maintenance points contribute to the ease of service.

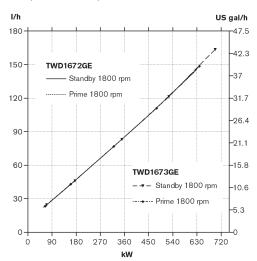
- Proven and straight-forward design built on Volvo Group technology
- · Low cost of ownership and operation
- SCR only no EGR, DOC, DPF or regeneration
- High efficient cooling system
- Excellent step load performance acc. to ISO 8528-5
- Compact, simple installation and easy to service
- Available as Genpac or Base engine configuration

60 Hz/1800 rpm

	Prime power			Standby power			Generator eff.
Engine	kWm	kWe	kVa	kWm	kWe	kVa	(%)
TWD1672GE	532	508	635	585	559	698	95,5
TWD1673GE	595	570	713	655	625	781	95,5

TWD1672-1673GE

Technical Data


Engine designation	TWD1672-1673GE
Configuration and no. of cylinders	in-line 6
Displacement, I (in ³)	
Method of operation	4-stroke
Bore, mm (in.)	
Stroke, mm (in.)	
Compression ratio	
Wet weight, engine only, kg (lb)	
Wet weight, Genpac (engine, cooling system, air	filtration system
and frame kg (lb)	

655 (891)

30 (41)

Performance (with fan, kW (hp))	1800 rpm
TWD1672GE Prime Power Standby Power Fan power consumption	532 (724) 585 (796) 30 (41)
TWD1673GE Prime Power	595 (809)

Prime Power Standby Power Fan power consumption

Dimensions

Not for installation. Dimensions in mm.

Rating guidelines

PRIME POWER rating corresponds to ISO Standard Power for continuous operation. It is applicable for supplying electrical power at variable load for an unlimited number of hours instead of commercially purchased power. A10 % overload capability for govering purpose is available for this rating. STANDBY POWER rating corresponds to ISO Standard Fuel Stop Power. It is applicable for supplying standby electrical power at variable load in areas with well established electrical networks in the event of normal utility power failure. No overload capability is available for this rating.

- 1 kW = 1 hp x 1.36
- 1 hp = 1 kW x 0.7355

Power standards

The engine performance corresponds to ISO 3046, BS 5514 and DIN 6271. The technical data applies to an engine without cooling fan and operating on a fuel with calorific value of 42.7 MJ /kg (18360 BTU/lb) and a density of 0.84 kg/liter (7.01 lb/US gal), also where this involves a deviation from the standards. Power output guaranteed within 0 to +2% att rated ambient conditions at delivery. Ratings are based on ISO 8528. Engine speed governing in accordance with ISO 3046/IV, class A1 and ISO 8528-5 class G3

400

300

Additional information

For additional information, please contact your Volvo Penta representative or visit www.volvopenta.com VOLVO

PENTA

AB Volvo Penta SE-405 08 Göteborg, Sweden www.volvopenta.com

Technical description

Engine and block

- Cast iron cylinder block with optimum distribution of forces without the block being unnessarily heavy.
- · Wet, replaceable cylinder liners
- Tapered connecting rods for increased piston lifetime
- Crankshaft induction hardened bearing surfaces and fillets with seven bearings for moderate load on main and high-end bearings
- Case hardened and Nitrocarburized transmission gears for heavy duty operation
- Viscous type crankshaft vibration dampers to withstand single bearing alternator torsional vibrations
- Replaceable valve guides and valve seats
- Over head camshaft and 4 valves per cylinder

Lubrication system

- Full flow oil cooler
- · Full flow disposable spin-on oil filter, for extra high filtration
- The lubricating oil level can be measured at start-up

Fuel system

- Electronic high pressure unit injectors
- Fuel prefilter with water separator and water-in-fuel indicator / alarm
- Fine fuel filter with manual feed pump and fuel pressure switch

Cooling system

- Efficient cooling with accurate coolant control through a water distribution duct in the cylinder block.
- Belt driven coolant pumps with high degree of efficiency
- Water-cooled charge air coolers

Turbo charger

- Efficient and reliable dual stage turbo chargers
- Intermediate charge air coolers for both turbo chargers
- · Waste gate system for the high pressure turbo charger

Electrical system

- Engine Management System 2.3 (EMS 2.3), an electronically controlled processing system which optimizes engine performance. It also includes advanced facilities for diagnostics and fault tracing
- The instruments and controls connect to the engine via the CAN SAE J1939 interface. The DCU is a control panel with display, engine control, monitoring, alarm, parameter setting and diagnostic functions. It also presents error codes in clear text. The DCU makes it possible to install and combine several sets of analogue and digital instruments.
- Sensors for oil pressure, oil temp, boost pressure, boost temp, coolant temp, fuel temp, water in fuel, fuel pressure and two speed sensors.

Exhaust aftertreatment system

SCR only. No EGR, DOC, DPF or regeneration. Wide range of installation options available.

1405

1525

 AdBlue/DEF tank including AdBlue/DEF Quality Level Temperature Sensor

654

1065

497

40

Not all models, standard equipment and accessories are available in all countries. All specifications are subject to change without notice. The engine illustrated may not be entirely identical to production standard engines.

VOLVO PENTA	Document No	Issue Index
TWD1672GE	22412770	02

Important

This Technical Data Sheet and the corresponding Installation Instructions provide important information to ensure the installed engine will operate according to the design specification in the Volvo Penta application for certification.

Requirements marked with 🛛 🕂 re considered as critical for exhaust emissions compliance according to the design specification in the Volvo Penta application for certification.

Failing to follow and meet these instructions and requirements when installing a certified engine in a piece of nonroad equipment for use in the United States violates U.S. federal law (40 CFR 1068.105(b)), subject to fines or other penalities as described in the Clean Air Act.

General

In-line four stroke diesel engine with direct injection. Rotation direction, anti-clockwise viewed towards flywheel. Turbocharged

Number of cylinders			6	
Displacement, total		litre	16,12	
		in ³	983,9	
Firing order			1-5-3-6-2-4	
Bore	mm	144		
	in	5,67		
Stroke	Stroke			
	in	6,50		
Compression ratio		16,8:1		
Wet weight	Engine only	kg	1810	
(Not including after treatment system)		lb	3990	
	Engine incl. cooling system and air filtration system	kg	2217	
		lb	4888	
	Frame	kg	550	
		lb	1213	
	Compensator and Mixer pipe	kg	25	
		lb	55	
	EATS Muffler	kg	188	
		lb	414	

VOLVO PENTA		Document No)		
TWD1672GE		2241277			
Performance			rpm	1500	1800
Prime Power		without fan	kW	NA	562
			hp	NA	764
		with fan	kŴ	NA	532
			hp	NA	724
Standby Power		without fan	kW	NA	615
			hp	NA	836
		with fan	kW	NA	585
			hp	NA	796
Torque at:	Prime Power		Nm	NA	2982
			lbft	NA	2199
	Standby Power		Nm	NA	3263
			lbft	NA	2406
Mean piston speed			m/s	NA	9,9
	T		ft/sec	NA	32,6
Effective mean pressure at:	Prime Power		MPa	NA	2,3
			psi	NA	337
Effective mean pressure at:	Standby Power		MPa	NA	2,5
			psi	NA	369
Max combustion pressure at:	Prime Power		MPa	NA	21
	-		psi	NA	3046
Max combustion pressure at:	Standby Power		MPa	NA	21,8
<u>,</u>			psi kgm ²	NA	3162
Total mass moment of inertia, J (mR ²)					50
			lbft ²	59	9,3
Total mass moment of inertia, J (mR ²) without flywheel			kgm ²	1,	92
			lbft ²	4	5,6
Friction Power			kW	NA	51
			hp	NA	69,4

Derating due to altitude - see Technical Diagrams

Engine noise emission Test Standards: ISO 3744-1981 (E) sound power

Tolerance ± 0.75 dB(A)		rpm	1500	1800
Measured sound power Lw	No load	dB(A)		118,1
	Prime Power	dB(A)		118,4
	Standby Power	dB(A)		118,5
Calculated sound pressure Lp at 1 m	No load	dB(A)		101,1
	Prime Power	dB(A)		101,4
	Standby Power	dB(A)		101,5

Issue Index 02

VOLVO PENTA

TWD1672GE

Test conditions for load acceptance data

Warm engine.	Generator M		Model		Type of AVR	
	Stamford		HCM534F1		MX341	
AVR Settings	UFRO (Hz):	57	DIP (%)*:	50	DWELL (%)*:	N/A
	Stability (%)*:	According to Stamford instructions	Voltage (V):	400	Load factor:	1.0

Applies to Stamford nomenclature, (%)*: % of max potentiometer setting range Load acceptance performance can vary due to actual alternator inertia, voltage regulator, type of load and local ambient conditions.

Abbreviation:	Full name:	Descriptions
AVR	Automatic Voltage Regulator	Generator performance and safty control unit
UFRO	Under Frequency Roll Off	Overheating protection at under frequency
DIP		Controls the slope of voltage drop when the UFRO is active
DWELL		Controls the slope of voltage recovery when the UFRO is active.

Single step load performance at 1800 rpm - PRIME (Resistiv load)

Load (%)	Speed diff (%)	Speed Recovery time (s)	Voltage diff (%)	Voltage Recovery time (s)	Remaining load (%)	Speed diff (%)	Speed Recovery time (s)	Voltage diff (%)	Voltage Recovery time (s)
0-20	2,2	1,3	0,6	0,0	20-100	9,3	2,9	16,8	1,6
0-40	4,4	1,8	2,1	0,6	40-100	5,7	2,4	7,3	1,2
0-60	6,4	2,3	8,4	1,2	60-100	3,9	1,9	2,5	1,0
0-65	7 (G3)	2,4	9,3	1,2	65-100	3,7	1,8	2,1	0,8
0-80	10 (G2)	2,9	16,4	1,2	74-100	2,3	1,3	1,3	0,3
0-100	14,7	3,2	26,1	1,8					
100-0	4,3	1,4	8,6	1,9					

Single step load performance at 1800 rpm - STAND BY (Resistiv load)

Load (%)	Speed diff (%)	Speed Recovery time (s)	Voltage diff (%)	Voltage Recovery time (s)	Remaining load (%)	Speed diff (%)	Speed Recovery time (s)	Voltage diff (%)	Voltage Recovery time (s)
0-20	2,4	1,4	1,1	0,0	20-100	10,2	3,2	19,8	1,6
0-40	4,6	2,1	4,1	1,2	40-100	6,2	2,5	9,8	1,6
0-59	7 (G3)	2,4	10,7	1,3	59-100	4,6	2,2	3,8	1,2
0-60	7,1	2,3	10,7	1,2	60-100	4,5	2,1	3,4	1,3
0-74	10 (G2)	2,9	17,2	1,2	74-100	3,1	1,6	2,0	0,8
0-80	12,0	3,1	21,1	1,3	80-100	2,6	1,4	1,6	0,3
0-100	17,0	3,5	30,5	2,0					
100-0	4,8	1,6	8,9	1,8					

VOLVO PENTA TWD1672GE	Document No 22412770		lssue Index 02			
Cold start performance Time from start to stay within 0.5% of no load speed at	°C	20	rpm s	1500 NA	1800 4,3]
ambient temperature:		5	S	NA	5,3	
		-15 *	s	NA	5,3	
		-30 **	S	NA	5,7	
		Min start temp*	°C	-3	1,0]

* With manifold heater 4 kW engaged, lubrication oil 15W/40 and block heater. ** With manifold heater 4 kW engaged, lubrication oil 5W/30 and block heater, Fuel MK-1.

Block heater type	Make	Power kW	3.3.	Cooling water temp engine block
Volvo part No: 22454340 P01				-2°C
	Calix	1.5 kW	10h ambient temp-30 C	28°F

Lubrication system			rpm	1500	1800
Lubricating oil consumption	Prime Power		litre/h	NA	0,10
			US gal/h		0,026
	Standby Power		litre/h	NA	0,11
			US gal/h		0,029
Oil system capacity including filters		litre	4	8	
			US gal	12	2,7
Dil sump capacity:		max	litre	4	2
			US gal	11	,1
		min	litre	3	2
			US gal	8	,5
Dil change intervals/specifications:	VDS-3*		h	50	00
			h		
			h		
Engine angularity limits:		front up	0	3	0
		front down	٥	3	0
		side tilt	0	3	0
Oil pressure at rated speed			kPa		399
			psi		58
ubrication oil temperature in oil sump:		max	°C	1:	30
			°F		66
Dil filter micron size			μ	4	0

See also general section in the sales guide

VOLVO PENTA			Document No	
TWD1672GE				
Fuel system		rpm	1500	1800
Prime Power	25%	g/kWh	NA	234
Specific fuel consumption at:		lb/hph	NA	0,379
	50%	g/kWh	NA	205
		lb/hph	NA	0,332
	75%	g/kWh	NA	197
		lb/hph	NA	0,319
	100%	g/kWh	NA	195
		lb/hph	NA	0,316
% adBlue consumption at:	25%	%	NA	6,1
(Compare to Fuel consumption by Volyme)	50%	%	NA	6,6
	75%	%	NA	7,1
	100%	%	NA	7,1
Standby Power	25%	g/kWh	NA	229
Specific fuel consumption at:		lb/hph	NA	0,371
	50%	g/kWh	NA	203
		lb/hph	NA	0,329
	75%	g/kWh	NA	196
		lb/hph	NA	0,317
	100%	g/kWh	NA	196
		lb/hph	NA	0,317
% adBlue consumption at:	25%	%	NA	6,2
(Compare to Fuel consumption by Volyme)	50%	%	NA	6,6
	75%	%	NA	7,3
	100%	%	NA	6,6
Fuel system		rpm	1500	1800
See front page for important information		ASTM D975 (2		
Fuel to conform to		ASTN D975 (2	.0)	
System supply flow at:		litre/h	NA	210,0
		US gal/h	NA	55,5
Fuel supply line max restriction		kPa	NA	30,0
(Measured at fuel inlet connection)		psi	NA	4,4
Fuel supply line max pressure, engine stopped		kPa	NA	0,0
		psi	NA	
System return flow		litre/h	NA	25,0
		US gal/h	NA	6,6
Fuel return line max restriction		kPa	NA	20,0
(Measured at fuel return connection)		psi	NA	2,9
Maximum allowable inlet fuel temp		°C	NA	60
(Measured at fuel inlet connection)		°F	NA	140
Prefilter / Water separator micron size		μ		0
Fuel filter micron size		μ	olvo/EMS 2.3	5
Governor type/make, standard				
njection pump type/make		Un	it injector hyb	nu

Issue Index 02

VOLVO PENTA	Document No)	Issue Index			
TWD1672GE	WD1672GE					
Intake and exhaust system		rpm	1500	1800		
Air consumption at:	Prime Power	m ³ /min	NA	46,06		
(+25°C and 100kPa)		cfm	NA	1627		
	Standby Power	m³/min	NA	48,22		
		cfm	NA	1703		
See front page for important information		kPa	NA	5		
Max allowed air intake restriction including piping		psi	NA	0,7		
Air filter restriction clean Volvo Penta filter		kPa	NA	1,4		
		psi	NA	0,2		
Heat rejection to exhaust at:	Prime Power	kW	NA	409		
		BTU/min	NA	23259		
	Standby Power	kW	NA	454		
		BTU/min	NA	25792		
Exhaust gas temperature after turbine at:	Prime Power	°C	NA	423		
		°F	NA	793		
	Standby Power	°C	NA	444		
		°F	NA	831		
See front page for important information	Prime Power	kPa	NA	19		
Max allowable back pressure in exhaust line		psi	NA	2,7		
(after turbine)	Standby Power	kPa	NA	20		
Pipe dimension Ø: mm		psi	NA	2,9		
See front page for important information	Prime Power	Δ°C	NA	10		
Max allowable temperature drop between turbine and SCR muffler inlet.		Δ°F	NA	18		
	Standby Power	Δ°C	NA	10		
		Δ°F	NA	18		
SCR muffler pressure drop	Prime Power	kPa	NA	9		
(at exhaust gas flow and exhaust temp given)		psi	NA	1,3		
	Standby Power	kPa	NA	10		
		psi	NA	1,5		
Exhaust gas flow at:	Prime Power	m³/min	NA	114,0		
(temp and pressure after turbine at the corresponding power setting)		cfm	NA	4025		
	Standby Power	m³/min	NA	123,1		
		cfm	NA	4347		

TWD1672GE				2241	2770			
Cooling system			rpm	1500	1800			
Heat rejection radiation from engine at:		Prime Power	kW	NA	24			
			BTU/min	NA	1365			
		Standby Power	kW	NA	26			
0.1.1			BTU/min	NA	1479			
colant Volvo Penta coolant					olant mixed			
			vith fresh water 4	0/60 Closed circuit				
Radiator cooling system type			m ²	NA	1.68			
			foot ²	NA	18,08			
Fan diameter			mm	NA	965			
		in	NA	37,99				
Fan power consumption			kW	NA	30			
			hp	NA	41			
Fan drive ratio					1.04:1			
Coolant capacity,	Engine only		litre	NA	33			
			US gal	NA	8,72			
	CACs (Charge Air Coolers)		litre	NA	10			
			US gal	NA	2,64			
	Coolant radiators incl piping,		litre	NA	48			
	Engine circuit		US gal	NA	12,68			
	coolant radiators incl piping,		litre	NA	48			
	CAC- circuit		US gal	NA	12,68			
	Expansion tank, Engine circuit		litre	NA	20			
			US gal	NA	5,28			
	Expansion tank, CAC circuit		litre	NA	7			
			US gal	NA	1,85			
Coolant pump, Engine circuit			drive/ratio	Belt /				
Coolant pump, CAC circuit			drive/ratio	Belt /	2,29:1			
Thermostat, Engine circuit		Start to open	°C	NA	82			
			°F	NA	180			
		Fully open	°C	NA	92			
			°F	NA	198			
Thermostat, CAC circuit		Start to open	°C	NA	40			
			°F	NA	104			
		Fully open	°C	NA	52			
			°F	NA	126			
Maximum static pressure head			kPa	NA	100			
(expansion tank height + pressure cap setting)			psi	NA	14,5			
Minimum static pressure head (expansion tank height + pressure cap setting)			kPa	NA NA	70			
Standard pressure cap setting			psi kPa	NA	10,2 75			
Standard pressure cap setting			psi	NA	10.9			
Maximum top tank temperature			°C	NA	10,9			
maximum top tank tomporaturo			°F	NA	225			
Charge air pressure			kPa	NA	360			
(after charge air coolers)			psi	NA	52,2			
See front page for important information	Prime Power		°C	NA	50			
Max allowed Charge air outlet temp			°F	NA	122			
At air inlet temp. 25°C	Standby Power		°C	NA	50			
•	oranaby r ower				50			

VOLVO PENTA

Document No

PENTA

TWD1672GE

Document No 22412770

Issue Index
02

- move of standard radiatorts			1500	1800
Maximum additional coolant, Engine circuit w	ith standard expansion tank	litre	NA	15
		US gal	NA	3,96
faximum additional coolant, CAC circuit with standard expansion tank		litre	NA	5
		US gal	NA	1,32
Maximum distans in vertikal direction with sta	ndard pressure cap	m	NA	2,5
(75 kPa)		ft	NA	8,20
Maximum additional pressure drop due to mo	ve	KPa	NA	10
		psi	NA	1,5
 replacement of standard radiators 				
Heat rejection to coolant	Prime Power	kW	NA	203
engine radiator at:		BTU/min	NA	11544
	Standby Power	kW	NA	223
		BTU/min	NA	12682
Heat rejection to coolant	Prime Power	kW	NA	187
CAC radiator at:		BTU/min	NA	10635
	Standby Power	kW	NA	206
		BTU/min	NA	11715
Vinimum coolant flow engine radiator (at ful	ly open thermostat)	litre/s	NA	6
		US gal/s	NA	1,59
Minimum coolant flow CAC radiator (at fully	open thermostat)	litre/s	NA	2,5
		US gal/s	NA	0,66
Maximum coolant pressure drop over engine	radiator incl. Piping	kPa	NA	70
(at coolant flow above)		psi	NA	10,2
Coolant pressure drop over complete engine	circuit cooling system	kPa	NA	160
(at coolant flow above)	psi	NA	23,2	
Coolant pressure drop over complete CAC ci	kPa	NA	135	
(at coolant flow above)		psi	NA	19,6
Nominal coolant pressure before engine circu	it coolant pump	kPa	NA	30
		psi	NA	4,4
Nominal coolant pressure before CAC circuit	coolant pump	kPa	NA	30
		psi	NA	4,4

Cooling performance Standard fan:

Standard fan: Fan ratio: 1 : 1.04 Fan type: FIX Cooling air flow and external restriction at different radiator air temperatures based on 107°C TTT and 40% antifreeze. Valid at 1 atm. (radiator and cooling fan, see optional equipment)

Engine speed	Air on temp		PRIME POWER	STANDBY POWER		
rpm	°C	Air flow External restriction		Air flow	External restriction	
		m ³ /s	Pa	m³/s	Pa	
1800	63	15,2	0			
	62	14,5	100	15,2	0	
	61	14,1	200			
	60	13,6	300			
	59			14,5	100	
	58			13,9	200	
	57			13,6	300	

Note! External restrictions are calculated for values >0 Pa

VOLVO PENTA

TWD1672GE

22412770

Document No

Issue Index **02**

Engine management system	
E	

Functionality	Alternatives	Default setting
Governor mode	Isochronous / droop	Isochronous
Governor droop	N/A	N/A
Governor response	Adjustable PID-constants (VODIA)	
Dual speed	Single Speed 1800rpm , 60Hz	1800,0
Idle speed	600-1200rpm	900,0
Fine speed adjustment	+-90rpm	0,0
Preheating function	On / Off	Off

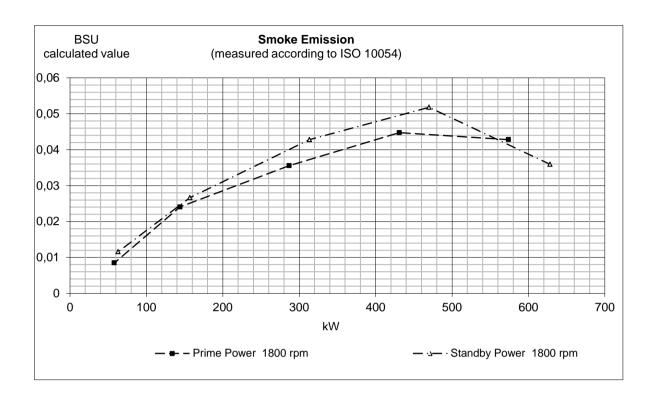
Engine sensor and switch settings

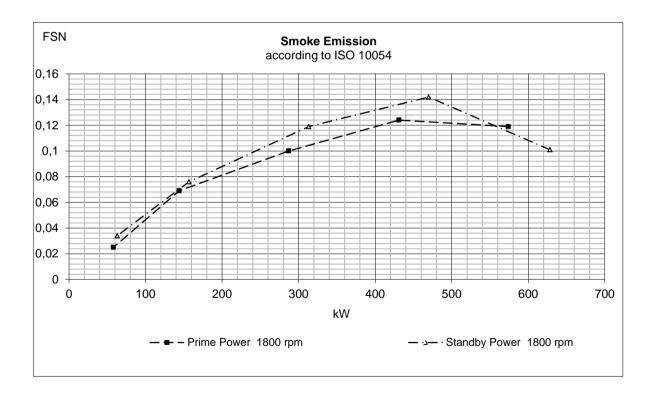
			Alarm level		Engine	protection
			0			Action.
Parameter		Unit	Setting range	Default setting	Level	Default/Alternative
Oil temp		°C	120 - 130	125	Setting +2.5	Shutdown after 10s
Oil pressure	Low idle 900 rpm	kPa	NA	170	145	Shutdown
	1800 rpm	kPa	NA	300	275	Shutdown
Oil level			NA	Min level		
DEF dosing ir	jection failure		NA	On	Low level	Shutdown after 10s
Coolant temp		°C	95 - 101	103	Setting +4	Shutdown after 10s
Coolant level			See cooling system	On	Low level	Shutdown after 10s
Fuel feed	Low idle	kPa	NA	Min level		
pressure	>1400 rpm	kPa	NA	Min level		
Water in fuel			NA	Max level		
Crank case p	essure	kPa	NA	Rapid increase	Rapid increase	Shutdown
Air filter press	ure drop	kPa	NA	5		
Altitude, abov	e sea	m				Automatic derating, see section Smoke, Fuel & Derating
Charge air ter	np	°C	NA	80	82,5	Shutdown after 10s
Charge air pressure		kPa	NA	25 above demand	35 above demand	Shutdown after 10s
Engine speed		rpm	100 - 120% of rated speed	115% of rated speed	Alarm level	Shutdown.
Exhaust Temperature (before SCR volume)		°C	NA	530	550	Shutdown after 10s
Engine prote	ction can be disabl	ed. For consec	quences please see VP International Li	mited Warranty Policy		

Electrical system

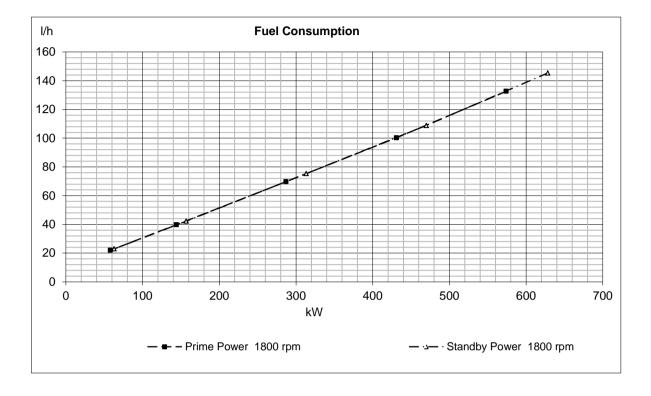
Voltage and type		24V / ir	nsulated from earth
Alternator:	make/output	A	Bosch / 80
	tacho output	Hz/alt. Rev	6
	drive ratio		3,94 : 1
tarter motor umber of teeth on: lax wiring resistance main circuit ranking current at +20°C		make	Mitsubishi Electric
		type	24V7.0KW12/3.175F
		kW	7,0
Number of teeth on:	flywheel		153
	starter motor		12
Max wiring resistance main circuit		mΩ	
Cranking current at +20°C		Α	300
Crank engine speed at 20°C		rpm	155
Starter motor battery capacity:	max	Ah/A	2x225
	min at +5°C	Ah/A	
Inlet manifold heater (at 20 V)		kW	4,0
Power relay for the manifold heater		A	1

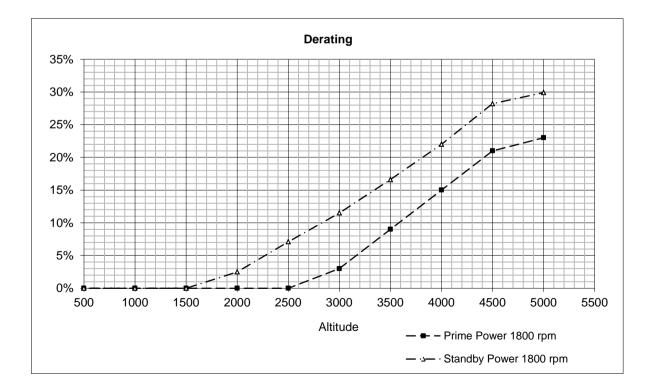
Power take off		rpm	1500	1800
Front end in line with crank shaft max:		Nm	NA	NA
		lbft	NA	NA
Front end belt pulley load. Direction of load viewed from flywheel side:	max left	kW	NA	NA
		hp	NA	NA
	max down	kŴ	NA	NA
		hp	NA	NA
	max right	kŴ	NA	NA
	_	hp	NA	NA
Timing gear at compressor PTO max:		Nm	NA	NA
		lbft	NA	NA
Speed ratio direction of rotation viewed from flywheel side		0,	91:1/clockwis	e
Timing gear at servo pump PTO max:		Nm	NA	NA
		lbft	NA	NA
Speed ratio direction of rotation viewed from flywheel side		1,	58:1/clockwis	е
Timing gear at hydraulic pump PTO max:		Nm	NA	NA
		lbft	NA	NA
Speed ratio direction of rotation viewed from flywheel side				
Max allowed bending moment in flywheel housing			150	000
- · ·		lbft	110	063
Max. rear main bearing load		N	NA	NA
-		lbf	NA	NA

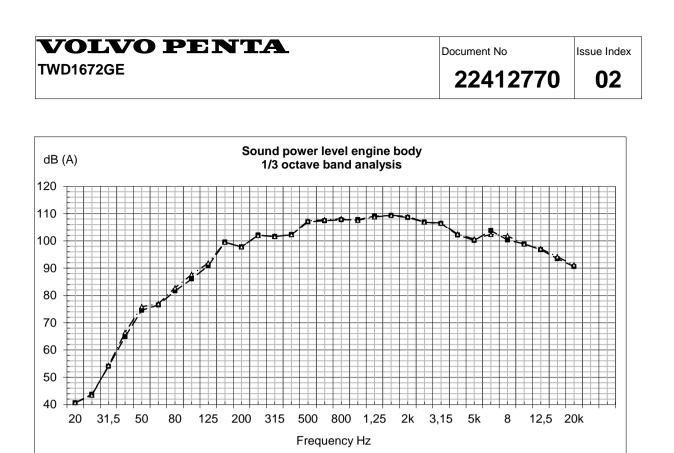

VOLVO PENTA TWD1672GE


Document No

22412770


Issue Index


02

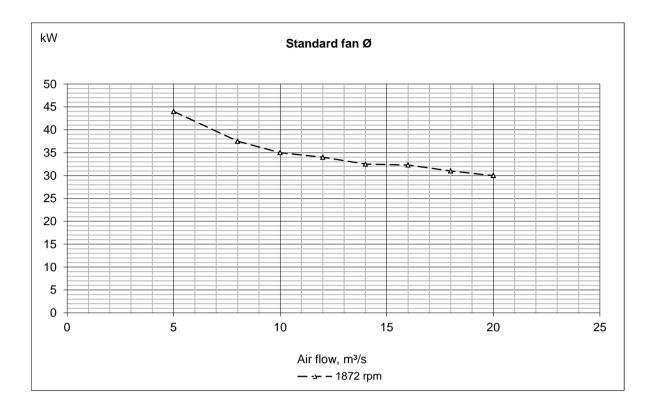


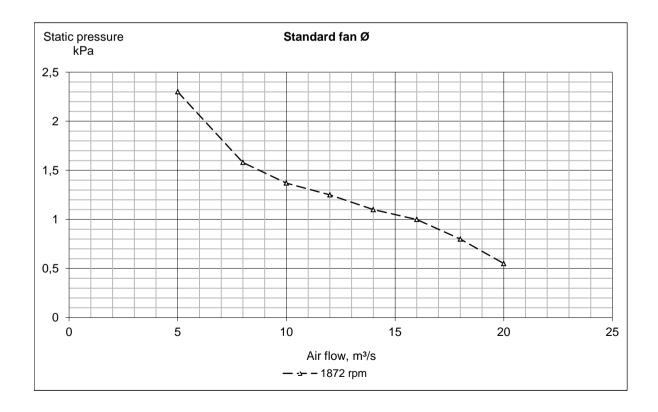
VOLVO PENTA	Document No	Issue Index
TWD1672GE	22412770	02

- - Prime Power 1800 rpm

-- ب- Standby Power 1800 rpm

VOLVO PENTA

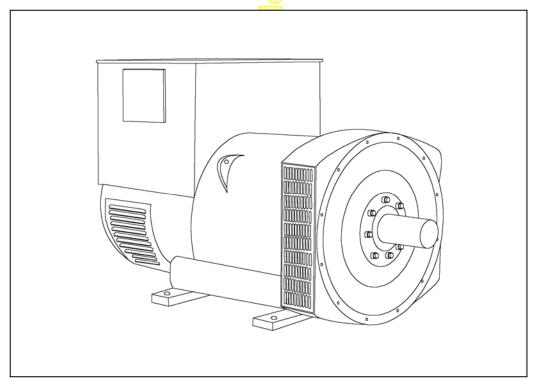

Document No


22412770

Issue Index

02

TWD1672GE



HCI 534E/544E - Winding 311

Technical Data Sheet

HCI534E/544E SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2 100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a threephase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permit parallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance.

Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

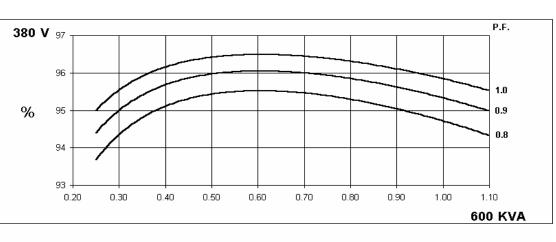
All values tabulated on page 8 are subject to the following reductions

5% when air inlet filters are fitted.

3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5° C by which the operational ambient temperature exceeds 40° C.

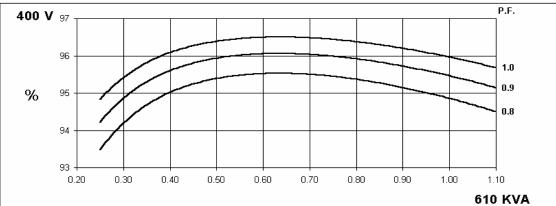
Note: Requirement for operating in an ambient exceeding 60°C must be referred to the factory.

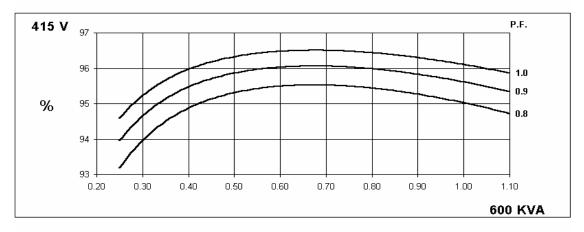

NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

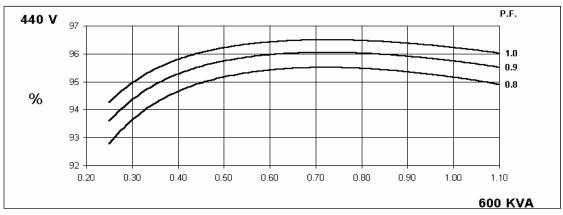
Front cover drawing typical of product range.

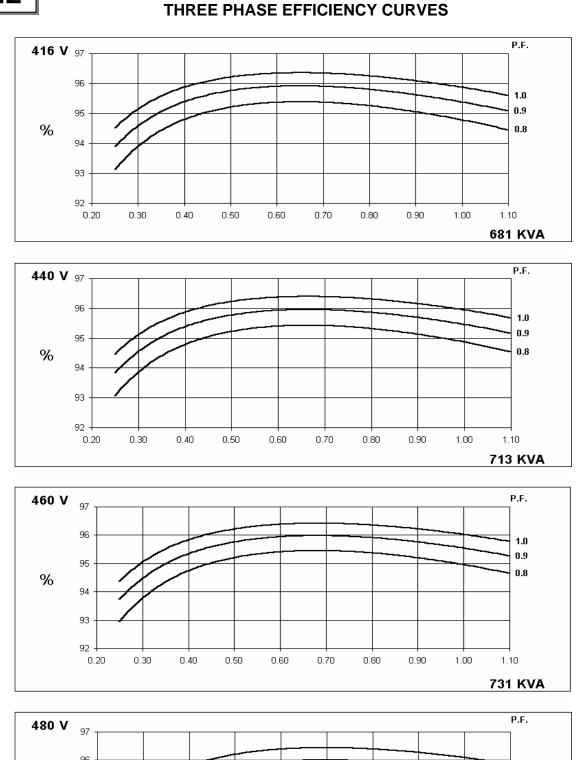
WINDING 311

CONTROL SYSTEM	-		BY P.M.G.										
A.V.R.	MX321	MX341											
VOLTAGE REGULATION	± 0.5 %	± 1.0 %		GINE GOVE									
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIR	CUIT DECRE	MENT CUR	VES (page 7)								
CONTROL SYSTEM	SELF EXCI	TED											
A.V.R.	AS440												
VOLTAGE REGULATION	± 1.0 %	± 1.0 % With 4% ENGINE GOVERNING											
SUSTAINED SHORT CIRCUIT	SERIES 4 C	CONTROL DO	DES NOT SU	STAIN A SH	ORT CIRCU	IT CURRENT	-						
INSULATION SYSTEM				CLAS	SS H								
PROTECTION				IP2	23								
RATED POWER FACTOR				0.	8								
STATOR WINDING				DOUBLE L	AYER LAP								
WINDING PITCH				TWO T	HIRDS								
WINDING LEADS				1:	-								
STATOR WDG. RESISTANCE		0 0043 (Dhms PER PI				ECTED						
		0.0043 (1.96 Ohm		STAR CONN	LUILD						
ROTOR WDG. RESISTANCE													
EXCITER STATOR RESISTANCE				17 Ohms									
EXCITER ROTOR RESISTANCE					PHASE AT 2								
R.F.I. SUPPRESSION	BS EN	61000-6-2 &	())				•	others					
WAVEFORM DISTORTION		NO LOAD <	1.5% NON-			D LINEAR LC	DAD < 5.0%						
MAXIMUM OVERSPEED			\geq	2250 R	ev/Min								
BEARING DRIVE END				BALL. 62	20 (ISO)								
BEARING NON-DRIVE END				BALL. 63	14 (ISO)								
			ARING			2 BEA							
WEIGHT COMP. GENERATOR			3 kg			1535	3						
WEIGHT WOUND STATOR			2 kg			722	-						
WEIGHT WOUND ROTOR			7 kg			588 8.7049	-						
SHIPPING WEIGHTS in a crate			8 kgm² 5 kg			8.7049 1625	-						
PACKING CRATE SIZE			x 124(cm)			166 x 87 >	-						
			Hz			60	, ,						
TELEPHONE INTERFERENCE		THF	< <mark>2%</mark>			TIF	<50						
COOLING AIR		1.035 m³/se	ec 2202 cfm			1.312 m ³ /se	c 2780 cfm						
VOLTAGE SERIES STAR	380/220	400/231	<mark>415</mark> /240	440/254	416/240	440/254	460/266	480/277					
VOLTAGE PARALLEL STAR	190/110	200/115	20 <mark>8</mark> /120	220/127	208/120	220/127	230/133	240/138					
VOLTAGE SERIES DELTA kVA BASE RATING FOR REACTANCE	220/110	230/115	240/120	254/127	240/120	254/127	266/133	277/138					
VALUES	600	610	600	600	681	713	731	750					
Xd DIR. AXIS SYNCHRONOUS	3.14	2.88	2.63	2.34	3.53	3.30	3.10	2.92					
X'd DIR. AXIS TRANSIENT	0.17	0.15	0.14	0.12	0.17	0.16	0.15	0.14					
X"d DIR. AXIS SUBTRANSIENT	0.12	0.11	0.10	0.09	0.12	0.11	0.11	0.10					
Xq QUAD. AXIS REACTANCE	2.45	2.25	2.05	1.82	2.82	2.64	2.48	2.33					
X"q QUAD. AXIS SUBTRANSIENT	0.26	0.24	0.22	0.20	0.34	0.32	0.30	0.28					
XL LEAKAGE REACTANCE	0.06	0.05	0.05	0.04	0.06	0.06	0.05	0.05					
X2 NEGATIVE SEQUENCE	0.18	0.16	0.15	0.13	0.23	0.22	0.20	0.19					
X0ZERO SEQUENCE	0.08	0.08	0.07	0.06	0.10	0.09	0.09	0.08					
REACTANCES ARE SATURAT T'd TRANSIENT TIME CONST.	IED	V	ALUES ARE	<u>PER UNIT A</u> 0.0		ND VOLTAG	E INDICATE	U					
T''d SUB-TRANSTIME CONST.				0.0									
T'do O.C. FIELD TIME CONST.				2.5									
Ta ARMATURE TIME CONST.				0.0	19s								
SHORT CIRCUIT RATIO				1/)	٢d								

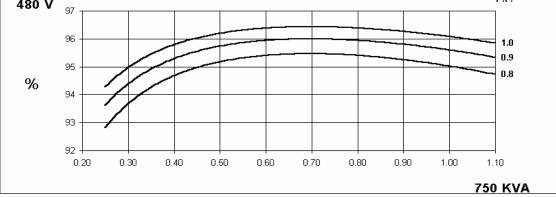

Winding 311


THREE PHASE EFFICIENCY CURVES


50


Hz

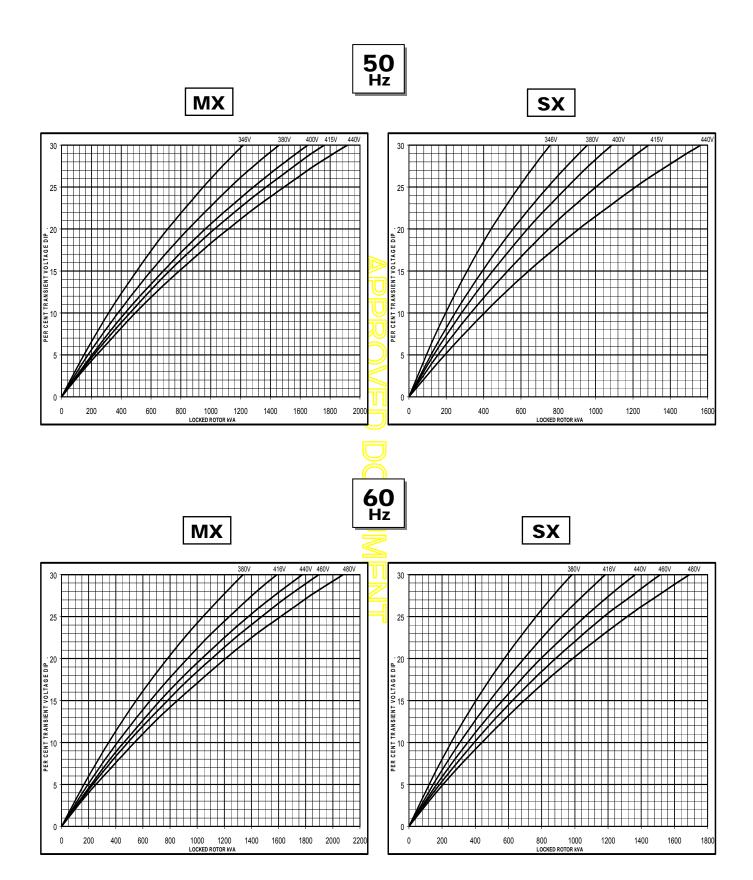
STAMFORD

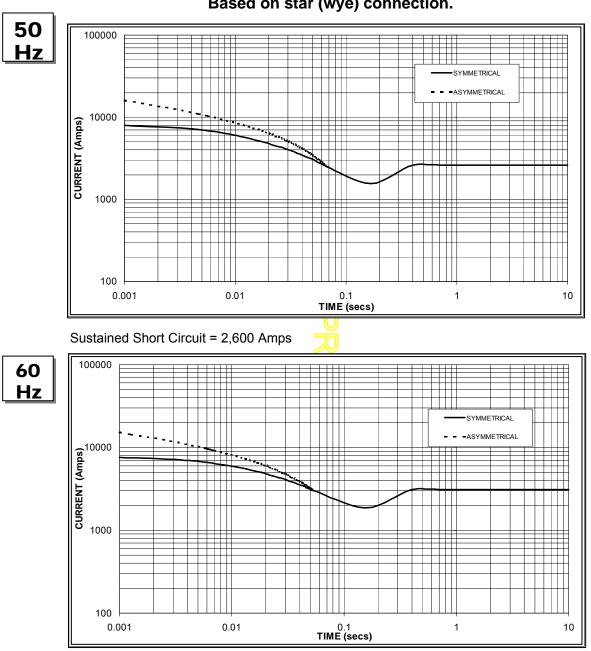


Winding 311

60

Hz


STAMFORD



Winding 311

Locked Rotor Motor Starting Curve

Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 3,100 Amps

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage :

50	Hz	60	Hz			
Voltage	Factor	Voltage	Factor			
380v	X 1.00	416v	X 1.00			
400v	X 1.06	440v	X 1.06			
415v	X 1.09	460v	X 1.12			
440v	X 1.12	480v X 1.20				
The sustains	d current val	ua is constan	t irrospostivo			

The sustained current value is constant irrespective of voltage level

Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit :

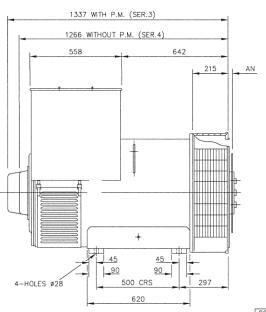
	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

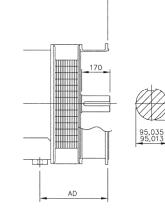
Note 3 Curves are drawn for Star (Wye) connected machines. For other connection the following multipliers should be applied to current values as shown :

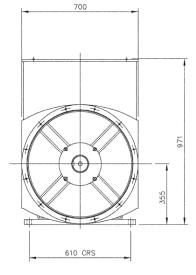
Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732



Winding 311 0.8 Power Factor


RATINGS

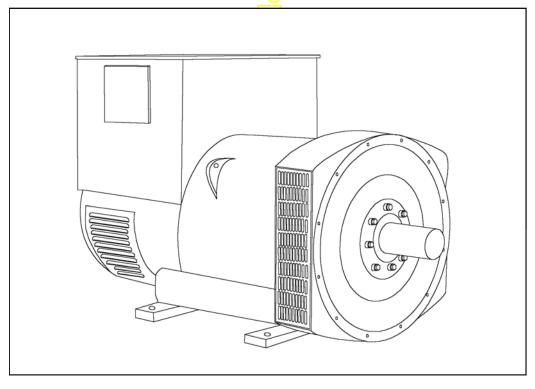

	Class - Temp Rise	C	ont. F -	105/40	°C	Co	ont. H -	125/40	°C	St	andby -	150/40	°C	Sta	andby -	163/27	″°C
50	Series Star (V)	380	400	415	440	380	400	415	440	380	400	415	440	380	400	415	440
Hz	Parallel Star (V)	190	200	208	220	190	200	208	220	190	200	208	220	190	200	208	220
	Series Delta (V)	220	230	240	254	220	230	240	254	220	230	240	254	220	230	240	254
	kVA	550	560	550	550	600	610	600	600	636	640	636	636	660	665	660	660
	kW	440	448	440	440	480	488	480	480	509	512	509	509	528	532	528	528
	Efficiency (%)	95.0	95.1	95.2	95.3	94.7	94.9	95.0	95.2	94.5	94.7	94.8	95.0	94.3	94.5	94.7	94.9
	kW Input	463	471	462	462	507	514	505	504	538	541	537	536	560	563	558	556
								_									
60	Series Star (V)	416	440	460	480	416	440	460	480	416	440	460	480	416	440	460	480
Hz	Parallel Star (V)	208	220	230	240	208	220	230	240	208	220	230	240	208	220	230	240
	Delta (V)	240	254	266	277	240	254	266	277	240	254	266	277	240	254	266	277
	kVA	625	650	663	675	681	713	731	750	719	750	780	800	738	769	798	819
	kW	500	520	530	540	545	570	585	600	575	600	624	640	590	615	638	655
	Efficiency (%)	95.0	95.1	95.2	95.3	94.8	94.9	95.0	95.0	94.6	94.7	94.8	94.8	94.5	94.6	94.7	94.8
	kW Input	526	547	557	567	575	601	616	632	608	634	658	675	625	650	674	691

DIMENSIONS

1450 (max) WITH P.M. 1379 (max)WITHOUT P.M.

COUPLING DISC	AN	ADAPTOR	AD
SAE 14	25,4	SAE 00	410
SAE 18	15,87	SAE 0	410
SAE 21	0	SAE 1/2	390
		SAE 1	390

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100


www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

HCI534E/544E - Winding 17

Technical Data Sheet

SPECIFICATIONS & OPTIONS

STANDARDS

Stamford industrial generators meet the requirements of BS EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100, AS1359.

Other standards and certifications can be considered on request.

VOLTAGE REGULATORS

AS440 AVR - STANDARD

With this self-excited system the main stator provides power via the Automatic Voltage Regulator (AVR) to the exciter stator. The high efficiency semi-conductors of the AVR ensure positive build-up from initial low levels of residual voltage.

The exciter rotor output is fed to the main rotor through a three-phase full-wave bridge rectifier. The rectifier is protected by a surge suppressor against surges caused, for example, by short circuit or out-of-phase paralleling.

The AS440 will support a range of electronic accessories, including a 'droop' Current Transformer (CT) to permitparallel operation with other ac generators.

MX341 AVR

This sophisticated AVR is incorporated into the Stamford (Permanent Magnet Generator (PMG) control system.

The PMG provides power via the AVR to the main exciter, giving a source of constant excitation power independent of generator output. The main exciter output is then fed to the main rotor, through a full wave bridge, protected by a surge suppressor. The AVR has in-built protection against sustained over-excitation, caused by internal or external faults. This de-excites the machine after a minimum of 5 seconds.

An engine relief load acceptance feature can enable full load to be applied to the generator in a single step.

If three-phase sensing is required with the PMG system the MX321 AVR must be used.

We recommend three-phase sensing for applications with greatly unbalanced or highly non-linear loads.

MX321 AVR

The most sophisticated of all our AVRs combines all the features of the MX341 with, additionally, three-phase rms sensing, for improved regulation and performance. Over voltage protection is built-in and short circuit current level adjustments is an optional facility.

WINDINGS & ELECTRICAL PERFORMANCE

All generator stators are wound to 2/3 pitch. This eliminates triplen (3rd, 9th, 15th ...) harmonics on the voltage waveform and is found to be the optimum design for trouble-free supply of non-linear loads. The 2/3 pitch design avoids excessive neutral currents sometimes seen with higher winding pitches, when in parallel with the mains. A fully connected damper winding reduces oscillations during paralleling. This winding, with the 2/3 pitch and carefully selected pole and tooth designs, ensures very low waveform distortion.

TERMINALS & TERMINAL BOX

Standard generators are 3-phase reconnectable with 12 ends brought out to the terminals, which are mounted on a cover at the non-drive end of the generator. A sheet steel terminal box contains the AVR and provides ample space for the customers' wiring and gland arrangements. It has removable panels for easy access.

SHAFT & KEYS

All generator rotors are dynamically balanced to better than BS6861:Part 1 Grade 2.5 for minimum vibration in operation. Two bearing generators are balanced with a half key.

INSULATION/IMPREGNATION

The insulation system is class 'H'.

All wound components are impregnated with materials and processes designed specifically to provide the high build required for static windings and the high mechanical strength required for rotating components.

QUALITY ASSURANCE

Generators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

The stated voltage regulation may not be maintained in the presence of certain radio transmitted signals. Any change in performance will fall within the limits of Criteria 'B' of EN 61000-6-2:2001. At no time will the steady-state voltage regulation exceed 2%.

DE RATES

All values tabulated on page 6 are subject to the following reductions

5% when air inlet filters are fitted.

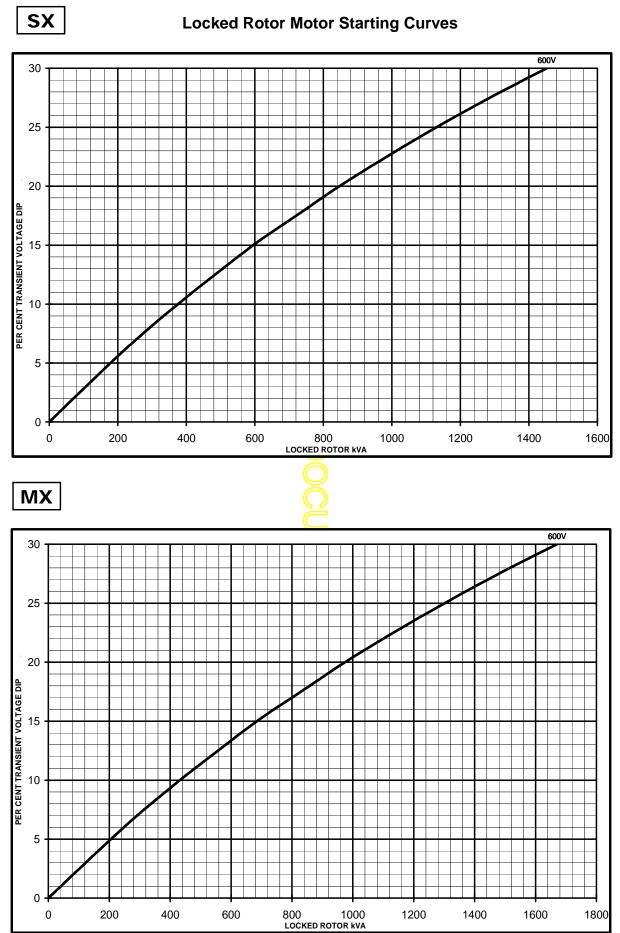
3% for every 500 metres by which the operating altitude exceeds 1000 metres above mean sea level.

3% for every 5 C by which the operational ambient temperature exceeds 40 C.

Note: Requirement for operating in an ambient exceeding 60 C must be referred to the factory.

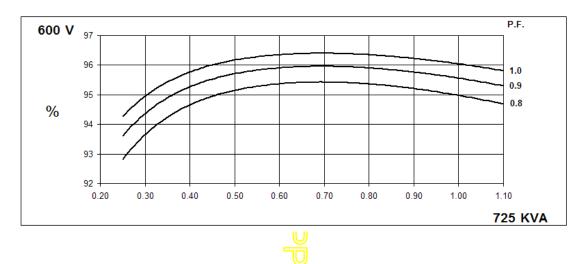
NB Continuous development of our products entitles us to change specification details without notice, therefore they must not be regarded as binding.

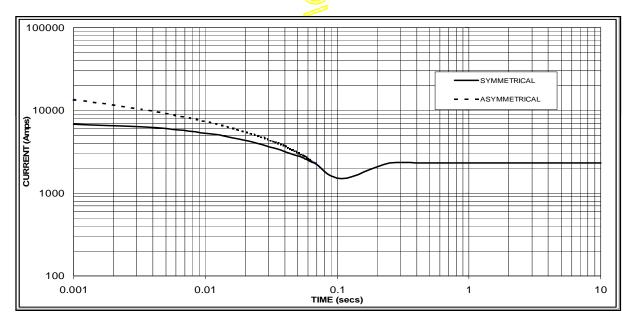
Front cover drawing typical of product range.



WINDING 17

CONTROL SYSTEM	SEPARATE	LY EXCITED E	BY P.M	1.G.	
A.V.R.	MX321	MX341			
VOLTAGE REGULATION	± 0.5 %			% ENGINE GOVER	NING
SUSTAINED SHORT CIRCUIT	REFER TO	SHORT CIRC		ECREMENT CURVE	S (page 5)
CONTROL SYSTEM	SELF EXCIT	ED			
A.V.R.	AS440				
VOLTAGE REGULATION	± 1.0 %	With 4% ENC	SINE G	GOVERNING	
SUSTAINED SHORT CIRCUIT	WILL NOT S	SUSTAIN A SH	IORT	CIRCUIT	
INSULATION SYSTEM	Ī			CLAS	SH
PROTECTION				IP2	
RATED POWER FACTOR					-
				DOUBLE LA	
STATOR WINDING					
WINDING PITCH				TWO TH	
WINDING LEADS				12	
STATOR WDG. RESISTANCE		0.0068 (Dhms	PER PHASE AT 22°	C SERIES STAR CONNECTED
ROTOR WDG. RESISTANCE				1.96 Ohms	at 22°C
EXCITER STATOR RESISTANCE				17 Ohms	at 22°C
EXCITER ROTOR RESISTANCE			\bigcirc	0.092 Ohms PER	PHASE AT 22°C
R.F.I. SUPPRESSION	BS E	N 61000-6-2 8	BSE	N 61000-6-4,VDE 08	375G, VDE 0875N. refer to factory for others
WAVEFORM DISTORTION					BALANCED LINEAR LOAD < 5.0%
MAXIMUM OVERSPEED			H	2250 Re	ev/Min
BEARING DRIVE END			\bigcirc	BALL. 622	
-				BALL: 631	· · · ·
BEARING NON-DRIVE END		1 BEA		DALL. 03	2 BEARING
WEIGHT COMP. GENERATOR		1543			1535 kg
WEIGHT WOUND STATOR		722			722 kg
WEIGHT WOUND ROTOR		617	-		588 kg
WR ² INERTIA		8.9828			8.7049 kgm ²
SHIPPING WEIGHTS in a crate		163			1625 kg
PACKING CRATE SIZE		166 x 87 x	12 <mark>4 (</mark>	cm)	166 x 87 x 124 (cm)
TELEPHONE INTERFERENCE		THF	<2%		TIF<50
COOLING AIR				1.035 m ³ /sec	2202 cfm
VOLTAGE SERIES STAR				600	V
VOLTAGE PARALLEL STAR				300	
VOLTAGE SERIES DELTA				346	V
kVA BASE RATING FOR REACTANCE				72	5
Xd DIR. AXIS SYNCHRONOUS				2.9	8
X'd DIR. AXIS TRANSIENT				0.1	4
X"d DIR. AXIS SUBTRANSIENT				0.1	0
Xq QUAD. AXIS REACTANCE				2.3	8
X"q QUAD. AXIS SUBTRANSIENT				0.2	8
XL LEAKAGE REACTANCE				0.0	5
X2 NEGATIVE SEQUENCE				0.1	9
X0ZERO SEQUENCE				0.0	8
REACTANCES ARE SATURAT	ED	V	ALUE		RATING AND VOLTAGE INDICATED
T'd TRANSIENT TIME CONST.				0.08	
				0.01	
T'do O.C. FIELD TIME CONST. Ta ARMATURE TIME CONST.				2.5	
SHORT CIRCUIT RATIO				1/X	
	I			1/7	-


Winding 17



Winding 17

THREE PHASE EFFICIENCY CURVES

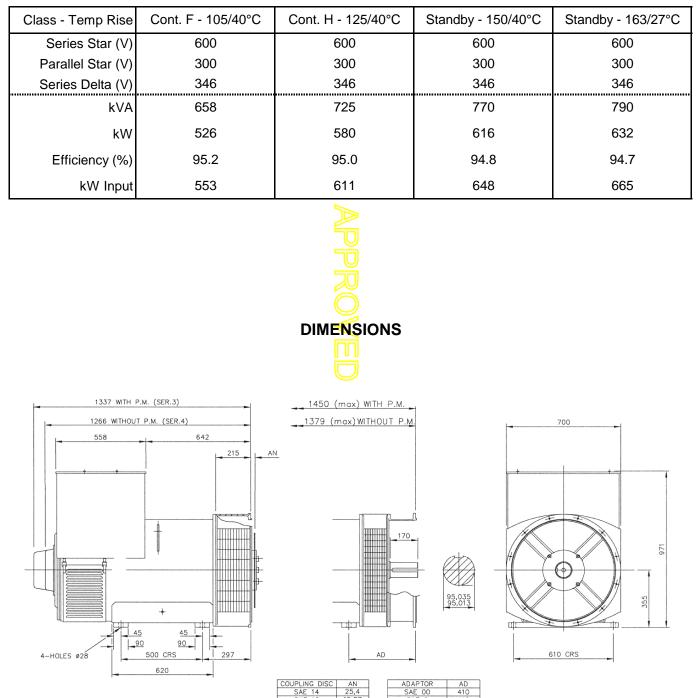
Three-phase Short Circuit Decrement Curve. No-load Excitation at Rated Speed Based on star (wye) connection.

Sustained Short Circuit = 2300 Amps

Note

The following multiplication factor should be used to convert the values from curve for the various types of short circuit :

	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	x 1.00	x 1.50	x 2.50
Max. sustained duration	10 sec.	5 sec.	2 sec.


All other times are unchanged

Winding 17 / 0.8 Power Factor

60Hz

RATINGS

Head Office Address: Barnack Road, Stamford Lincolnshire, PE9 2NB United Kingdom Tel: +44 (0) 1780 484000 Fax: +44 (0) 1780 484100

www.cumminsgeneratortechnologies.com

Copyright 2010, Cummins Generator Technologies Ltd, All Rights Reserved Stamford and AvK are registered trade marks of Cummins Generator Technologies Ltd Cummins and the Cummins logo are registered trade marks of Cummins Inc.

DSE7410/20 **AUTO START & AUTO MAINS FAILURE MODULES**

The DSE7410 is an Auto Start Control Module and the DSE7420 is an Auto Mains (Utility) Failure Control Module suitable for a wide variety of single, diesel or gas, gen-set applications.

A sophisticated module monitoring an extensive number of engine parameters, the DSE74xx will annunciate warnings, shutdown and engine status information on the back-lit LCD screen, illuminated LED, remote PC, audible alarm and via SMS text alerts. The module includes RS232, RS485 & Ethernet ports as well as dedicated terminals for system expansion.

The DSE7400 Series modules are compatible with electronic (CAN) and non-electronic (magnetic pickup/alternator sensing) engines and offer a comprehensive number of flexible inputs, outputs and extensive engine protections so the system can be easily adapted to meet the most demanding industry paralleling requirements.

The modules can be easily configured using the DSE Configuration Suite Software. Selected front panel editing is also available.

ENVIRONMENTAL TESTING STANDARDS

ELECTRO-MAGNETIC COMPATIBILITY

BS EN 61000-6-2 EMC Generic Immunity Standard for the Industrial Environment BS EN 61000-6-4 EMC Generic Emission Standard for the Industrial Environment

ELECTRICAL SAFETY

BS EN 60950 Safety of Information Technology Equipment, including Electrical Business Equipment

TEMPERATURE BS EN 60068-2-1 Ab/Ae Cold Test -30 °C BS EN 60068-2-2 Bb/Be Dry Heat +70 °C

VIBRATION

BS EN 60068-2-6 Ten sweeps in each of three maior axes 5 Hz to 8 Hz @ +/-7.5 mm, 8 Hz to 500 Hz @ 2 an

HUMIDITY

BS EN 60068-2-30 Db Damp Heat Cyclic 20/55 °C @ 95% BH 48 Hours BS EN 60068-2-78 Cab Damp Heat Static 40 °C @ 93% RH 48 Hours

SHOCK

BS EN 60068-2-27 Three shocks in each of three major axes 15 gn in 11 mS

DEGREES OF PROTECTION PROVIDED BY ENCLOSURES

BS EN 60529

IP65 - Front of module when installed into the control panel with the supplied sealing gasket.

COMPREHENSIVE FEATURE LIST TO SUIT A WIDE VARIETY OF GEN-SET APPLICATIONS

•=== •															
DSE2130 DSE2131 DSE2133 DSE2152 DSE2152 DSE2157 DSE2548	MODEM MC		PC	Ŷ	i] ,,		× °		Į	J ₁	đ		Ĩ	
DSENET EXPANSION	RS232 AND RS485			usb Host	CONFIGURABLE INPUTS		JRABLE DC OUTPUTS			NALOG ENDER		EMERGE STOP	NCY	DC POWER SUPPLY 8-3	
		-	***	ETHERNET	Ę		1	+	Т	-2	₽-	44 1	F		
DSE7410/20 $\swarrow_{\text{OTHER}} \uparrow_{\text{OTHER}} \uparrow_{$															
MAINS (UTILITY) SE BUS SENSING (DSI		N/C VOI OUTPUT	lt free T)LT)UTPUT	GENERA	TOR SE	NSING		CHAR ALTER	ige Rnator	FUEL & C OUTPUTS FLEXIBLE W	5	ELECTRONI ENGINES & MAGNETIC P	
VOL E		Ļ Ļ		Ļ	₽` <u>`</u>					s D+ W/L					<u>™</u> ₹
	1ph 2ph 3ph N	2	1 La	<u>щ</u>	1		1ph 2ph 3ph E N		1ph 2ph 3ph N						<u>`</u> .

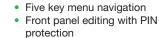
DSE7410/20 AUTO START & AUTO MAINS FAILURE MODULES

DSE7420

1

DSE7410

KEY FEATURES


- Configurable inputs (11)
- Configurable outputs (8)
- Voltage measurement
- Mains (utility) failure detection
- Dedicated load test button
- kW overload alarms
- Comprehensive electrical protection
- RS232, RS485 & Ethernet remote communications
- Modbus RTU/TCP
- PLC functionality
- Multi event exercise timer
- Back-lit LCD 4-line text display
- Multiple display languages
- Automatic start/Manual start
- Audible alarm
- Fixed and flexible LED indicators
- Event log (250)
- Engine protection
- Fault condition notification to a designated PC
- Front panel mounting
- Protected front panel programming
- Configurable alarms and timers
- Configurable start and stop timers

RELATED MATERIALS

DSE7410 Installation Instructions
DSE7420 Installation Instructions
DSE74xx Quick Start Guide
DSE74xx Operator Manual
DSE74xx PC Configuration Suite Manual

DEEP SEA ELECTRONICS PLC UK

Highfield House, Hunmanby Industrial Estate, Hunmanby YO14 0PH **TELEPHONE** +44 (0) 1723 890099 **FACSIMILE** +44 (0) 1723 893303 **EMAIL** sales@deepseaplc.com **WEBSITE** www.deepseaplc.com

- 3 configurable maintenance alarms
- CAN and magnetic pick-up/Alt. sensing

MARY MARKED

- Fuel usage monitor and low fuel alarms
- Charge alternator failure alarm
- Manual speed control (on
- compatible CAN engines)Manual fuel pump control
- "Protections disabled" feature
- Reverse power protection
- Power monitoring (kW h, kV Ar, kV A h, kV Ar h)
- Load switching (load shedding and dummy load outputs)
- Automatic load transfer (DSE7420)
- Unbalanced load protection
- Independent earth fault trip
- Fully configurable via DSE Configuration Suite PC software
- Configurable display languages
- Remote SCADA monitoring via DSE Configuration Suite PC software

- Advanced SMS messaging (additional external modem required)
- Start & stop capability via SMS messaging
- Additional display screens to help with modem diagnostics
- DSENet[®] expansion
- Integral PLC editor

KEY BENEFITS

- RS232, RS485 & Ethernet can be used at the same time
- DSENet[®] connection for
- system expansion
- PLC functionality
- Five step dummy load support
- Five step load shedding supportHigh number of inputs and
- High number of inputs and outputs
- Worldwide language support
- Direct USB connection to PC
- Ethernet monitoring
- USB host
- Data logging & trending

SPECIFICATION

DC SUPPLY CONTINUOUS VOLTAGE RATING 8 V to 35 V Continuous

CRANKING DROPOUTS

Able to survive 0 V for 50 mS, providing supply was at least 10 V before dropout and supply recovers to 5 V. This is achieved without the need for internal batteries

MAXIMUM OPERATING CURRENT 260 mA at 12 V, 130 mA at 24 V

MAXIMUM STANDBY CURRENT 120 mA at 12 V. 65 mA at 24 V

CHARGE FAIL/EXCITATION RANGE 0 V to 35 V

OUTPUTS OUTPUT A (FUEL) 15 A DC at supply voltage

OUTPUT B (START) 15 A DC at supply voltage

OUTPUTS C & D 8 A AC at 250 V AC (Volt free)

AUXILIARY OUTPUTS E,F,G,H,I & J 2 A DC at supply voltage

GENERATOR VOLTAGE RANGE 15 V to 333 V AC (L-N)

FREQUENCY RANGE 3.5 Hz to 75 Hz

MAINS (UTILITY) (DSE7420) VOLTAGE RANGE 15 V to 333 V AC (L-N)

FREQUENCY RANGE 3.5 Hz to 75 Hz

BUS (DSE7410) VOLTAGE RANGE

15 V to 333 V AC (L-N) FREQUENCY RANGE

3.5 Hz to 75 Hz

VOLTAGE RANGE +/- 0.5 V to 70 V

FREQUENCY RANGE 10,000 Hz (max)

DIMENSIONS

OVERALL 240 mm x 172 mm x 57 mm 9.4" x 6.8" x 2.2"

PANEL CUTOUT 220 mm x 160 mm 8.7" x 6.3"

MAXIMUM PANEL THICKNESS 8 mm 0.3"

STORAGE TEMPERATURE RANGE -40 °C to +85 °C

PART NO'S 053-085 053-088 057-162 057-161 057-160

Deep Sea Electronics Plc maintains a policy of continuous development and reserves the right to change the details shown on this data sheet without prior notice. The contents are intended for guidance only.

DEEP SEA ELECTRONICS INC USA

3230 Williams Avenue, Rockford, IL 61101-2668 USA **TELEPHONE** +1 (815) 316 8706 **FACSIMILE** +1 (815) 316 8708 **EMAIL** sales@deepseausa.com **WEBSITE** www.deepseausa.com

Registered in England & Wales No.01319649 VAT No.316923457 Annex to the technical catalog

Tmax T8

Low voltage molded case circuit breaker up to 3000 A UL 489 and CSA C22.2 Standard

1SDC210026D0201 - 2008 Edition

Main characteristics

The Tmax family, conforming to the UL 489 and CSA C22.2 No. 5.1 Standards, is enriched with the Tmax T8 size, which allows 3000 A to be reached. Also available in the 1600 A, 2000 A and 2500 A frames, Tmax T8 is equipped with the same electronic trip units as Tmax T7, thereby guaranteeing extremely high performances able to satisfy all installation requirements. Adequately sized for the performances offered (W=16.8 / D=11.2 / H=15.0 in). Tmax T8 is able to interrupt the following short-circuit currents: 125 kA@480 V and 100 kA@600 V.

Main characteristics

General characteristics

The Tmax T8 size has both circuit breakers and molded case switches (MCS). The following tables show the main characteristics of these ranges.

Circuit breakers for power distribution

				Tmax T8
Frame size			[A]	1600/2000/2500/3000
Number of poles			[No]	3/4
Rated voltage		(AC) 50-60 Hz	[V]	600
		(DC)	[M]	
Test voltage (1 min) 50-60 Hz			[M]	3000
Interrupting ratings			[kA rms]	V
	240 V AC		[kA rms]	125
	480 V AC		[kA rms]	125
	600 V AC		[kA rms]	100
Trip units	Electronic	PR232/P-T8		—
		PR331/P		-
		PR332/P		=
Dimensions fixed version (3p)		Н	[in-mm]	15.0 - 382
		W	[in-mm]	16.8 - 427
		D	[in-mm]	11.2 - 282
Mechanical life			[operations]	15000
Weight (fixed 3p)		1600/2000/2500 A	[lbs]	161
		3000 A	[lbs]	236

Molded case switches (MCS)

The Tmax T8 MCS are derived from the corresponding circuit breakers, of which they keep the overall dimensions, the versions, the fixing systems and the possibility of mounting accessories unchanged. This version only differs from the circuit breakers in the absence of the protection trip units. All molded case switches comply with the UL 489 and CSA C22.2 Standards and are self-protected.

			Tmax T8V-D
Rating		[A]	2000/2500/3000
Poles		[No]	3/4
Magnetic override		[A]	40000
Rated voltage	AC (50-60 Hz)	[M]	600
	DC	[V]	-

4

Tmax-Molded Case Circuit Breakers

T7 1200A Frame

AC Circuit Breakers and Switches

3 and 4 Pole

Motor Circuit Protectors

Higher Performances in Less Space

Field Installable Accessories and Trip Units

Dimensions	3P Fixed Version	10.55H x 8.26W x 6.06D
Weight	21.4 (lbs)	

Compliance with Standards

UL 489 CSA C22.2 No.5.1 IEC 60947-2 Standards EC directive:

- "Low Voltage Directives" (LVD) no. 73/23 EEC

- "Electromagnetic Compatibility Directive" (EMC) no.89/336 EEC

The ABB Quality System complies with the international ISO 9001 - 2000 Standard (model for quality assurance in design, development, construction, and installation and service) and with the equivalent European EN ISO 9001 and Italian UNI EN ISO 9001 Standards

Interrupting ratings (RMS sym. kAmps)		T 7	
Continuous Current Rating		1200	
Number of Poles		3-4	
	S	н	L
AC			
240V	65	100	150
480V	50	65	100
600V	25	50	65

Company Quality Systems and Environmental Systems

The new Tmax series has a hologram on the front, obtained using special anti-imitation techniques, which guarantees the quality and that the circuit breaker is an original ABB product.

Attention to protection of the environment and to health and safety in the work place is another priority commitment for ABB and, as confirmation of this, the company environmental management system has been certified by RINA in 1997, in conformity with the international ISO 14001 Standard. This certification has been integrated in 1999 with the Management System for Health and Safety in the workplace, according to OHSAS 18001 (British Standards), obtaining one of the first certification of integrated management System, QES (Quality, Environment,

Mounting

Fixed Drawout

Connections

Busbar connection or compression lugs Pressure-type terminals for bare cables Rear connections

Auxiliary Devices for Indication and Control

- Auxiliary contacts AUX
- Undervoltage release UVR
- Shunt trip SOR
- Terminal covers
- Padlock provision PLL
- Direct rotary handle RHD
- Key lock KLF
- Early auxiliary contact AUE

Safety) issued by RINA. ABB - the first industry in the electromechanical section in Italy to obtain this recognition - thanks to a revision of the production process with an eye to ecology has been able to reduce the consumption of raw materials and waste from processing by 20%. ABB's commitment to safeguarding the environment is also shown in a concrete way by the Life Cycle Assessments of its products carried out directly by the ABB Research and Development in collaboration with the ABB Research Center. Selection of materials, processes and packing materials is made optimizing the true environmental impact of the product, also foreseeing the possibility of its being recycled.

Trip Unit

PR231/P, PR232/P, PR331DS, and PR332DS/P electronic trip unit

- Transmitted rotary handle RHE
- Front extended terminal EF
- Front terminal for copper-aluminum FC CuAl
- Front extended spread terminal ES
- Rear orientated terminal R
- Phase separators
- Residual current relay (IEC Only)

ABB Inc.

1206 Hatton Road Wichita Falls, TX 76302 For more information and the location of your local field office please go to www.abb-control.com

Tmax-Molded Case Circuit Breakers

T6 800A Frame

AC Circuit Breakers and Switches

DC Circuit Breakers and Switches

3 and 4 Pole

Motor Circuit Protectors

Higher Performances in Less Space

Field Installable Accessories and Trip Units

Dimensions	3P Fixed Version	10.55H x 8.26W x 4.07D
Weight	20.9 (lbs)	

Compliance with Standards

-
UL 489
CSA C22.2 No.5.1
IEC 60947-2
Standards
EC directive:

- "Low Voltage Directives" (LVD) no. 73/23 EEC

- "Electromagnetic Compatibility Directive" (EMC) no.89/336 EEC

The ABB Quality System complies with the international ISO 9001 - 2000 Standard (model for quality assurance in design, development, construction, and installation and service) and with the equivalent European EN ISO 9001 and Italian UNI EN ISO 9001 Standards

	Т	6	
800 3-4			
65	100	200	200
35	50	65	100
20	25	35	42
35	35	50	65
20	20	35	50
	65 35 20 35	8 3 N S 65 100 35 50 20 25 	3-4 N S H 65 100 200 35 50 65 20 25 35 35 35 50

*Thermal Magnetic Trip Only

Company Quality Systems and Environmental Systems

The new Tmax series has a hologram on the front, obtained using special anti-imitation techniques, which guarantees the quality and that the circuit breaker is an original ABB product.

Attention to protection of the environment and to health and safety in the work place is another priority commitment for ABB and, as confirmation of this, the company environmental management system has been certified by RINA in 1997, in conformity with the international ISO 14001 Standard. This certification has been integrated in 1999 with the Management System for Health and Safety in the workplace, according to OHSAS 18001 (British Standards), obtaining one of the first certification of integrated management System, QES (Quality, Environment,

Mounting

Fixed Drawout

Connections

Busbar connection or compression lugs Pressure-type terminals for bare cables Rear connections

mechanical section in Italy to obtain this recognition - thanks to a revision of the production process with an eye to ecology has been able to reduce the consumption of raw materials and waste from processing by 20%. ABB's commitment to safeguarding the environment is also shown in a concrete way by the Life Cycle Assessments of its products carried out directly by the ABB Research and Development in collaboration with the ABB Research Center. Selection of materials, processes and packing materials is made optimizing the true environmental impact of the product, also foreseeing the possibility of its being recycled.

Safety) issued by RINA. ABB - the first industry in the electro-

Trip Unit

TMA thermal magnetic trip units, with adjustable thermal threshold (I1 = $0.7...1 \times In$) and adjustable magnetic threshold (I3 = $5...10 \times In$).

PR221DS, PR222DS/P, and PR222DS/PD-A electronic trip unit

Auxiliary Devices for Indication and Control

- Auxiliary contacts AUX
- Undervoltage release UVR
- Shunt trip SOR
- Terminal covers
- Front for lever operating mechanism FLD
- Direct rotary handle RHD
- Stored energy motor operator MOE
- Key lock KLF
- Early auxiliary contact AUE

- Transmitted rotary handle RHE
- Front extended terminal EF
- Front terminal for copper-aluminum FC CuAl
- Front extended spread terminal ES
- Rear orientated terminal R
- Phase separators
- Residual current relay (IEC Only)

ABB Inc.

1206 Hatton Road Wichita Falls, TX 76302 For more information and the location of your local field office please go to www.abb-control.com Publ No.

Digital Linear Chargers

On-Board Chargers Today

- Current Supplier provides quality product and design services. However, services are at their pacing with limited resources; and a history of issues meeting launch dates. PC charger delays prompted a re-evaluation of our controls and processes
- Resulted in a renewed commitment to the charger category
 - Allow supplier to focus on what they do well... build product
 - All charger development controlled by Minn Kota engineering
- Minn Kota designs, tests, and qualifies
- Supplier manufactures period
- Revised product plan
 - 2011 Digital Linear On-board chargers
 - 2012 Precision Charge On-board chargers

New Digital Linear On-Board Chargers

- Taking existing Linear On-board family of chargers and raising the bar
 - Analog to Digital designs; New "D" designation in model name

New Digital Linear On-Board Chargers (cont.)

- New microprocessor controlled linear design provides software enriched features and functionality
 - More repeatable set points (voltage limit and current) = improved charge curves
 - Maintenance mode time-out feature (auto-off)
 - Arc protection
 - Enhanced status codes
 - System okay
 - Charge stage indication (Bulk, Absorption, or Maintenance)
 - Full charge
 - Maintenance mode status
 - Multiple specific error indications low battery voltage, damaged temp sensor, no output lead attached, etc.
- Up to 2X Faster Charge Times in high heat conditions

LED Status Code Detail

- 1. A GREEN power light is lit to indicate AC power is applied
- 2. A YELLOW light is lit for each bank to indicate the battery is charging in the Bulk Mode
- 3. A flashing YELLOW light is lit for each bank to indicate the battery is charging in the Absorption Mode
- 4. A flashing GREEN light is lit for each bank to indicate the battery is in maintenance mode and ready to use
- 5. A GREEN light is lit for each bank to indicate the battery is in long term maintenance mode and ready to use
- 6. A RED light for each bank is lit if any of the following apply:
 - a) No battery is connected to an output cord this may also indicate a blown fuse in the fuse holder

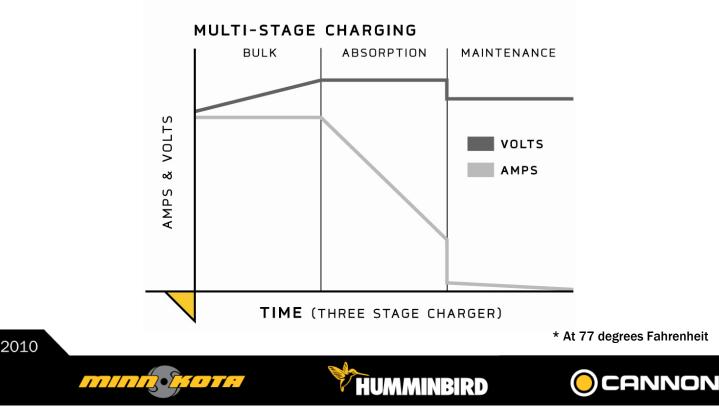
HUMMINBIRD

b) The battery is connected reverse polarity

mmå føra

- c) A short circuit
- d) The battery voltage is below 4 volts the bank will not charge a battery in this condition

Digital Linear Chargers


LED Status Code Detail (cont.)

- e) The battery voltage is above 18 volts the bank will not charge a battery in this condition
- 7. A flashing RED light is lit for each bank if there is a damaged temperature sensor on the output cord the bank will not operate if this occurs.
- 8. Flashing RED and GREEN lights are lit for each bank if any of the following apply:
 - a) The battery voltage does not rise above 10.5V after 3 hours the battery may be damaged and will not be charged
 - b) Charging in Bulk Mode exceeds 20 hours the battery may be damaged and will not be charged

Digital Linear Charging Technologies

Automatic 3-Stage Charging

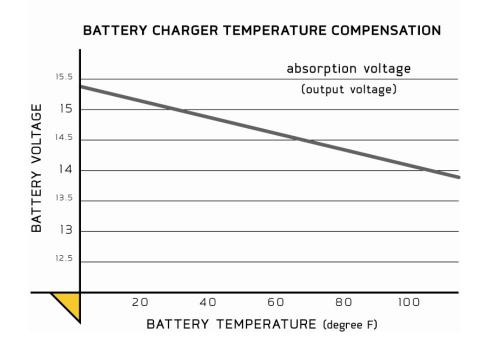
- Bulk high amps at low voltage until battery reaches ~75% charge
- Absorption at ~75% charge, current tapers down until the battery voltage reaches 14.4V* (full charge)
- Maintenance (or Float) when the battery voltage reaches full charge, charger output is dropped to 13.4V* (.1A-.3A). After 24 hours, the charger automatically turns off and automatically turns on when the battery voltage drops below 12.6 volts

Digital Linear Chargers

Digital Linear Charging Technologies (cont.)

Automatic Temperature Compensation

- Senses temperature and adjusts output voltage
- Protects batteries from overcharging at high temperatures
- Maintains gassing threshold for a full charge


minn for a

Gassing Threshold

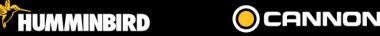
- Voltage level at which electrolyte begins moving within the battery
- This threshold must be reached in order to fully charge a battery

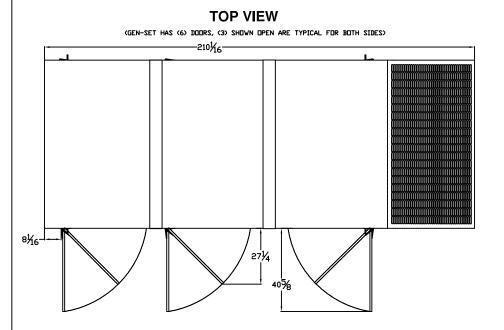
Effect of Temperature

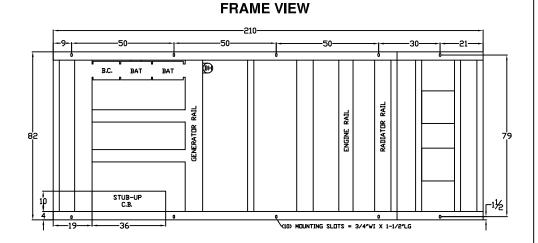
- Gassing threshold is higher at lower temps, lower at higher temps
- Too much voltage at high temperatures can "boil" and destroy a battery

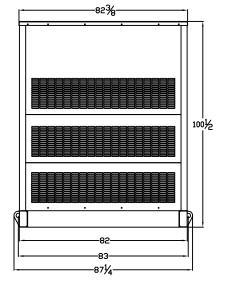
HUMMINBIRD

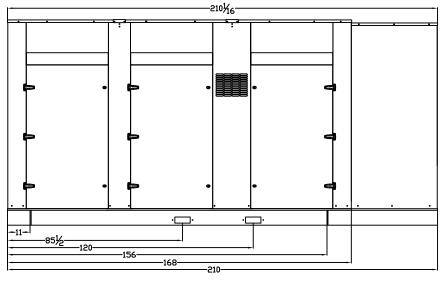
Specifications

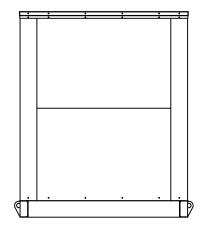

- Waterproof, shock-and vibration-resistant aluminum construction
- · Saltwater tested and fully corrosion-resistant
- Short circuit, reverse polarity, and ignition protected
- For use with 12V/6 cell batteries that are flooded/wet cell, maintenance free or starved electrolyte (AGM) only
- FCC compliant
- UL listed to marine standard 1236
- 3 year warranty
- Replaces all existing current on-board chargers (excluding portables)
- No Price Increase
- Availability: November 2010


DIGITAL LINEAR ON-BOARD CHARGERS			
PRODUCT	PRODUCT		
CODE	DESCRIPTION		
1821065	MK 106D (1 bank x 6 amps)		
1821105	MK-110D (1 bank x 10 amps)		
1822105	MK-210D (2 bank x 5 amps)		
1823155	MK-315D (3 bank x 5 amps)		
1822205	MK-220D (2 bank x 10 amps)		
1823305	MK-330D (3 bank x 10 amps)		
1824405	MK-440D (4 bank x 10 amps)		
1822305	MK-230D (2 bank x 15 amps)		
1823455	MK-345D (3 bank x 15 amps)		
1824605	MK-460D (4 bank x 15 amps)		








LEVEL 2 ENCLOSURE OUTLINE DIMENSIONS FOR T4D-5500 THRU T4D-6000

GENERATOR END VIEW

SIDE VIEW

RADIATOR END VIEW